Skip to main content
Log in

A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing

Part 1: Theoretical Formulation

  • Invited Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work concerns a two-level procedure for the global optimum design of composite modular structures. The case-study considered is the least weight design of a stiffened wing-box for an aircraft structure. The method is based on the use of the polar formalism and on a genetic algorithm. In the first level of the procedure, the optimal structure is designed as it was composed by a single equivalent layer, while a laminate realizing the optimal structure is found in the second level. The method is able to automatically find the optimal number of modules, no simplifying assumptions are used, and it can be easily generalized to other problems. The work is divided into two parts: the theoretical formulation in this first part, the genetic procedure and some numerical examples in the second one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valot, E., Vannucci, P.: Some exact solutions for fully orthotropic laminates. Compos. Struct. 40, 437–454 (2005)

    Google Scholar 

  2. Haftka, R.T., Walsh, J.L.: Stacking sequence optimization for buckling of laminated plates by integer programming. AIAA J. 30, 814–819 (1992)

    Article  Google Scholar 

  3. Irisarri, F.-X., Bassir, D.H., Carrere, N., Maire, J.-F.: Multiobjective stacking sequence optimization for laminated composite structures. Compos. Sci. Technol. 69, 983–990 (2009)

    Article  Google Scholar 

  4. Sebaey, T.A., Lopes, C.S., Blanco, N., Costa, J.: Ant colony optimization for dispersed laminated composite panels under biaxial loading. Compos. Struct. 94, 31–36 (2011)

    Article  Google Scholar 

  5. Vincenti, A., Vannucci, P., Ahmadian, M.R.: Optimization of laminated composites by using genetic algorithm and the polar description of plane anisotropy. Mech. Adv. Mat. Struct. (2012). doi:10.1080/15376494.2011.563415

  6. Butler, R., Williams, F.W.: Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates. Comput. Struct. 43, 699–708 (1992)

    Article  Google Scholar 

  7. Wiggenraad, J.F.M., Arendsen, P., da Silva Pereira, J.M.: Design optimisation of stiffened composite panels with buckling and damage tolerance constraints. AIAA J. 1750, 420–430 (1998)

    Google Scholar 

  8. Nagendra, S., Jestin, D., Gürdal, Z., Hatfka, R.T., Watson, L.T.: Improved genetic algorithm for the design of stiffened composite panels. Comput. Struct. 58, 543–555 (1996)

    Article  MATH  Google Scholar 

  9. Kaletta, P., Wolf, K.: Optimisation of composite aircraft panels using evolutionary computation methods. In: Proceedings of ICAS 2000 Congress, Harrogate, UK, 27 August–1 September, pp. 1–10 (2000)

    Google Scholar 

  10. Bisagni, C., Lanzi, L.: Post-buckling optimisation of composite stiffened panels using neural networks. Compos. Struct. 58, 237–247 (2002)

    Article  Google Scholar 

  11. Raymer, D.P.: Aircraft Design: a Conceptual Approach. AIAA Education Series. AIAA, Washington (2006)

    Google Scholar 

  12. Tsai, S.W., Hahn, T.: Introduction to Composite Materials. Technomic, Lancaster (1980)

    Google Scholar 

  13. Foldager, J.P., Hansen, J.S., Olhoff, N.: A general approach forcing convexity of ply angle optimization in composite laminates. Struct. Optim. 16, 201–211 (1998)

    Google Scholar 

  14. Vannucci, P.: A new general approach for optimising the performances of smart laminates. Mech. Adv. Mat. Struct. 18, 558–568 (2011)

    Article  Google Scholar 

  15. Jibawy, A., Julien, C., Desmorat, B., Vincenti, A., Léné, F.: Hierarchical structural optimization of laminated plates using polar representation. Int. J. Solids Struct. 48, 2576–2584 (2011)

    Article  Google Scholar 

  16. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proceedings of Colloque Euromech 115, VIllard-de-Lans, France (1979)

    Google Scholar 

  17. Vannucci, P.: A note on the geometric and elastic bounds for composite laminates. HAL Archives Ouvertes. hal-00666598 (2012). http://hal.archives-ouvertes.fr/docs/00/66/65/98/PDF/article.pdf

  18. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tsai, S.W., Pagano, N.J.: Invariant properties of composite materials. In: Tsai, S.W., Halpin, J.C., Pagano, N.J. (eds.) Proceedings of Composite Materials Workshop, pp. 233–253. Technomic, Lancaster (1968)

    Google Scholar 

  20. Kandil, N., Verchery, G.: New methods of design for stacking sequences of laminates. In: Proceedings of CADCOMP88, Computer Aided Design in Composite Materials 88, Southampton, pp. 243–257 (1988)

    Google Scholar 

  21. Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Int. J. Solids Struct. 38, 9281–9294 (2001)

    Article  MATH  Google Scholar 

  22. Vannucci, P.: Designing the elastic properties of laminates as an optimisation problem: a unified approach based on polar tensor invariants. Struct. Multidiscipl. Optim. 31, 378–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vannucci, P.: Influence of invariant material parameters on the flexural optimal design of thin anisotropic laminates. Int. J. Mech. Sci. 51, 192–203 (2009)

    Article  Google Scholar 

  24. Julien, C.: Conception optimale de l’anisotropie dans les structures stratifiées à rigidité variable par la mèthode polaire-génétiques. Ph.D. Thesis, Institut d’Alembert UMR7190, CNRS—Université Pierre et Marie Curie Paris 6, France (2010). (in French)

  25. Hammer, V.B., Bendsoe, M.P., Lipton, R., Pedersen, P.: Parametrization in laminate design for optimal compliance. Int. J. Solids Struct. 34, 415–434 (1997)

    Article  MATH  Google Scholar 

  26. Abrate, S.: Optimal design of laminated plates and shells. Compos. Struct. 29, 269–286 (1994)

    Article  Google Scholar 

  27. Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials. Part I. Constant stiffness design. Compos. Struct. 90, 1–11 (2009)

    Article  Google Scholar 

  28. Ghiasi, H., Fayazbakhsh, D., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials. Part II. Variable stiffness design. Compos. Struct. 93, 1–13 (2010)

    Article  Google Scholar 

  29. Werren, F., Norris, C.B.: Mechanical properties of a laminate designed to be isotropic. US forest products laboratory, report 1841, USA (1953)

  30. Fukunaga, H.: On isotropic laminate configurations. J. Compos. Mater. 29, 519–535 (1990)

    Article  Google Scholar 

  31. Paradies, R.: Designing quasi-isotropic laminates with respect to bending. Compos. Sci. Technol. 56, 461–472 (1996)

    Article  Google Scholar 

  32. Vannucci, P., Verchery, G.: A new method for generating fully isotropic laminates. Compos. Struct. 58, 75–82 (2002)

    Article  Google Scholar 

  33. Caprino, C., Crivelli-Visconti, I.: A note on specially orthotropic laminates. J. Compos. Mater. 16, 395–399 (1982)

    Article  Google Scholar 

  34. Grédiac, M.: On the design of some particular orthotropic plates with non-standard ply orientations. J. Compos. Mater. 34, 1665–1699 (2000)

    Article  Google Scholar 

  35. Vannucci, P., Verchery, G.: A special class of uncoupled and quasi-homogeneous laminates. Compos. Sci. Technol. 61, 1465–1473 (2001)

    Article  Google Scholar 

  36. Vincenti, A., Ahmadian, M.R., Vannucci, P.: BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering. J. Glob. Optim. 48, 399–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vincenti, A., Vannucci, P.: Optimal design of smart composite laminates by the polar method and the genetic algorithm BIANCA. In: Mota Soares, C.A., et al. (eds.) Proceedings of III European Conference on Computational Mechanics—Solids, Structures and Coupled Problems in Engineering, Lisbon (2006)

    Google Scholar 

  38. Vannucci, P., Vincenti, A.: The design of laminates with given thermal/hygral expansion coefficients: a general approach based upon the polar-genetic method. Compos. Struct. 79, 454–466 (2007)

    Article  Google Scholar 

  39. Lagrange, J.L.: Sur la figure des colonnes. Miscellanea Taurinensia (1770)

  40. Clausen, T.: About the shape of architectural columns. Bull. Cl. Phys.-Math. Acad. Imp. Sci. St.-Pétersbg. 9, 279–294 (1851)

    Google Scholar 

  41. Banichuk, N.V.: Problems and Methods of Optimal Structural Design. Plenum, New York (1983)

    Google Scholar 

  42. Charpentier, I.: On higher-order differentiation in nonlinear mechanics. Optim. Methods Softw. (2011). doi:10.1080/10556788.2011.577775

    Google Scholar 

  43. Gurdal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Composite Materials. Wiley, New York (1999)

    Google Scholar 

  44. Montemurro, M., Vincenti, A., Vannucci, P.: A Completely Genetic Approach to the Design of Laminates with Minimum Number of Plies. HAL Archives Ouvertes, hal-00673132 (2012). http://hal.archives-ouvertes.fr/docs/00/67/31/32/PDF/paper.pdf

  45. Vannucci, P.: HDR Thesis. TEL, Thèses en Ligne, tel-00625958 (2002). http://tel.archives-ouvertes.fr/docs/00/62/59/58/PDF/HDR.pdf

Download references

Acknowledgements

Authors wish to thank Professor Franco Giannessi: his helpful suggestions have considerably contributed to improving the quality of the paper. FNR of Luxembourg, supporting M. Montemurro through Aides à la Formation Recherche Grant PHD-09-139, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vannucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montemurro, M., Vincenti, A. & Vannucci, P. A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing. J Optim Theory Appl 155, 1–23 (2012). https://doi.org/10.1007/s10957-012-0067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0067-9

Keywords

Navigation