Skip to main content
Log in

Approximation of Supremum of Max-Stable Stationary Processes & Pickands Constants

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let \(X(t),t\in \mathbb {R}\) be a stochastically continuous stationary max-stable process with Fréchet marginals \(\Phi _\alpha , \alpha >0\) and set \(M_X(T)=\sup _{t \in [0,T]} X(t),T>0\). In the light of the seminal articles (Samorodnitsky in Ann Probab 32(2):1438–1468, 2004; Adv Appl Probab 36(3):805–823, 2004), it follows that \(A_T=M_X(T)/T^{1/\alpha }\) converges in distribution as \(T\rightarrow \infty \) to \( \mathcal {H}^{1/\alpha } X(1)\), where \( \mathcal {H}\) is the Pickands constant corresponding to the spectral process Z of X. In this contribution, we derive explicit formulas for \( \mathcal {H}\) in terms of Z and show necessary and sufficient conditions for its positivity. From our analysis, it follows that \(A_T^\beta ,T>0\) is uniformly integrable for any \(\beta \in (0,\alpha )\). For Brown–Resnick X, we show the validity of the celebrated Slepian inequality and discuss the finiteness of Piterbarg constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042–2065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doob, J.L.: Stochastic Processes. Wiley Classics Library. Wiley, New York (1990)

    Google Scholar 

  4. Dombry, C., Kabluchko, Z.: Ergodic decompositions of stationary max-stable processes in terms of their spectral functions. Stoch. Process. Appl. 127(6), 1763–1784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dieker, A.B., Mikosch, T.: Exact simulation of Brown–Resnick random fields at a finite number of locations. Extremes 18, 301–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dȩbicki, K., Engelke, S., Hashorva, E.: Generalized Pickands constants and stationary max-stable processes. Extremes 20(3), 493–517 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dȩbicki, K.: Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98(1), 151–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pickands III, J.: Upcrossing probabilities for stationary Gaussian processes. Trans. Am. Math. Soc. 145, 51–73 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs, vol. 148. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  10. Kabluchko, Z., Wang, Y.: Limiting distribution for the maximal standardized increment of a random walk. Stoch. Process. Appl. 124(9), 2824–2867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dȩbicki, K., Hashorva, E.: On extremal index of max-stable processes. Probab. Math. Stat. 27(2), 299–317 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Ehlert, A., Schlather, M.: Capturing the multivariate extremal index: bounds and interconnections. Extremes 11(4), 353–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Planinić, H., Soulier, P.: The tail process revisited. Extremes 21(4), 551–579 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hashorva, E.: Representations of max-stable processes via exponential tilting. Stoch. Process. Appl. 128(9), 2952–2978 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kabluchko, Z.: Spectral representations of sum- and max-stable processes. Extremes 12, 401–424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Stoev, S.A.: On the association of sum- and max-stable processes. Stat. Probab. Lett. 80(5–6), 480–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Y., Roy, P., Stoev, S.A.: Ergodic properties of sum- and max-stable stationary random fields via null and positive group actions. Ann. Probab. 41(1), 206–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dieker, A.B., Yakir, B.: On asymptotic constants in the theory of extremes for Gaussian processes. Bernoulli 20(3), 1600–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Samorodnitsky, G.: Extreme value theory, ergodic theory and the boundary between short memory and long memory for stationary stable processes. Ann. Probab. 32(2), 1438–1468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samorodnitsky, G.: Maxima of continuous-time stationary stable processes. Adv. Appl. Probab. 36(3), 805–823 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roy, P., Samorodnitsky, G.: Stationary symmetric \(\alpha \)-stable discrete parameter random fields. J. Theor. Probab. 21(1), 212–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roy, P.: Ergodic theory, abelian groups and point processes induced by stable random fields. Ann. Probab. 38(2), 770–793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roy, P.: Nonsingular group actions and stationary \(S\alpha S\) random fields. Proc. Am. Math. Soc. 138(6), 2195–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chakrabarty, A., Roy, P.: Group-theoretic dimension of stationary symmetric \(\alpha \)-stable random fields. J. Theor. Probab. 26(1), 240–258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Stoev, S.A.: On the structure and representations of max-stable processes. Adv. Appl. Probab. 42(3), 855–877 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Snigdha, P., Roy, P., Xiao, Y.: Maximal moments and uniform modulus of continuity for stable random fields, arXiv:1709.07135v1 (2017)

  27. Dombry, C., Kabluchko, Z.: Random tessellations associated with max-stable random fields. Bernoulli 24(1), 30–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kabluchko, Z., Stoev, S.: Stochastic integral representations and classification of sum- and max-infinitely divisible processes. Bernoulli 22(1), 107–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Google Scholar 

  30. Engelke, S., Ivanovs, J.: A Lévy-derived process seen from its supremum and max-stable processes. Electron. J. Probab. (2016). https://doi.org/10.1214/16-EJP1112

  31. Gushchin, A., Kordzakhia, N., Novikov, A.: Translation invariant statistical experiments with independent increments. Stat. Inference Stoch. Process. 21(2), 363–383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Engelke, S., Kabluchko, Z.: Max-stable processes associated with stationary systems of independent Lévy particles. Stoch. Process. Appl. 125(11), 4272–4299 (2015)

    Article  MATH  Google Scholar 

  33. Samorodnitsky, G., Taqqu, M.S.: Stochastic monotonicity and Slepian-type inequalities for infinitely divisible and stable random vectors. Ann. Probab. 21(1), 143–160 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vitale, R.A.: Some comparisons for Gaussian processes. Proc. Am. Math. Soc. 128(10), 3043–3046 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vitale, R.A.: The Wills functional and Gaussian processes. Ann. Probab. 24(4), 2172–2178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oesting, M., Kabluchko, Z., Schlather, M.: Simulation of Brown–Resnick processes. Extremes 15(1), 89–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lifshits, M.A.: Gaussian Random Functions. Mathematics and its Applications, vol. 322. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  38. Dȩbicki, K., Hashorva, E., Ji, L.: Extremes of a class of nonhomogeneous Gaussian random fields. Ann. Probab. 44(2), 984–1012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Many thanks to Parthanil Roy for discussions and suggestion of the key reference [20]. We thank the referees for numerous suggestions that improved the original manuscript. EH was supported by SNSF Grant 200021-175752/1. KD was partially supported by NCN Grant No 2015/17/B/ST1/01102 (2016-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkelejd Hashorva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Tilt-Shift and inf-argmax Formula

Appendix: Tilt-Shift and inf-argmax Formula

Next we present the tilt-shift formula which is initially shown for the special case of Brown–Resnick max-stable processes with log-normal Z in [5]. The inf-argmax formula mentioned above is shown in [14], we present below a shorter proof.

Lemma 5.1

Let \(X(t),t\in \mathbb {R}\) be a max-stable process with Fréchet marginals \(\Phi _\alpha \), de Haan representation (1.1) and càdlàg sample paths.

  1. i)

    If X is stationary, then for any nonnegative 0-homogeneous \(\mathcal {D}/\mathcal {B}(\mathbb {R})\)-measurable functional H we have

    (5.1)
  2. ii)

    If (5.1) holds for any \(h\in \mathbb {R}\), then X with representation (1.1) is stationary.

Proof of Lemma 5.1

i) As in [6] we have that the stationarity of X implies the shift invariance of the exponent measure, i.e., for any \(h\in \mathbb {R},A \subset \mathcal {D}\)

If A is 0-homogeneous (meaning \(cA=A, c>0\)) set in \(\mathcal {D}\), then since further implies that for any \(h\in \mathbb {R}\) using \(z^\alpha = \int _0^\infty \mathbb {I}( r z >1) \alpha r^{-\alpha -1} \,dr\) valid for any \(z\in (0,\infty )\) we obtain

hence the claim for any 0-homogeneous \(\mathcal {D}/\mathcal {B}(\mathbb {R})\)-measurable functional H follows easily.

ii) If (5.1) holds, then for any \(n\ge 1, t_i \in \mathbb {R}, x_i>0, i\le n\) since \(\inf \arg \max \) functional is 0-homogeneous and \(\mathcal {D}/\mathcal {B}(\mathbb {R})\)-measurable, by (1.2) we have

where we used (5.1) in the second last line above. Consequently, X is stationary and thus the proof if complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dȩbicki, K., Hashorva, E. Approximation of Supremum of Max-Stable Stationary Processes & Pickands Constants. J Theor Probab 33, 444–464 (2020). https://doi.org/10.1007/s10959-018-00876-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-00876-8

Keywords

Mathematics Subject Classification (2010)

Navigation