Skip to main content
Log in

Generation and bleaching of E′-centers induced in a-SiO2 by γ-irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiation indicator as well as radiation shielding of extremely high dose have been proposed. Three different types of a-SiO2 namely, G1-xerogel, G2-fused and G3-natural silica were monitored by EPR before and after γ-irradiation. The E′-center has been used for EPR radiation characterization of a-SiO2 with assuming that the signal intensity changes with γ-irradiation differently as those of other EPR signals do. Formation and decay of the E′-center are closely related with its precursor, diamagnetic oxygen vacancies. Gamma ray of large dose (500 kGy) creates oxygen vacancies giving up-and-down irradiation effects, which, therefore, might be useful for high dose radiation indicator (G1) and radiation shielding (G2 and G3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mclaughlin WL, Boyd AW, Chadwick KH, McDonald JD, Miller A (1989) Dosimetry for radiation processing. Taylor & Francis Ltd, London ISBN0 0-85066-740

    Google Scholar 

  2. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, Ouerdane Y (2012) Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers. J Lightw Technol 30:1726–1732

    Article  CAS  Google Scholar 

  3. Girard S, Marcandella C, Alessi A, Boukenter A, Ouerdane Y, Richard N, Paillet P, Gaillardin M, Raine M (2012) Transient radiation responses of optical fibers: influence of MCVD process parameters. IEEE Trans Nucl Sci 59:2894–2901

    Article  CAS  Google Scholar 

  4. Seo HS, Oh K (2000) Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core. Opt Commun 181:145–151

    Article  CAS  Google Scholar 

  5. Le Parc R, Champagnon B, Levelut C, Martinez V, David L, Faivre A, Flammer I, Hazemann JL, Simon JP (2008) Density and concentration fluctuations in SiO2–GeO2 optical fiber glass investigated by small angle X-ray scattering. J Appl Phys 103:094917–094918

    Article  Google Scholar 

  6. Ikushima AJ, Fujiwara T, Saito K (2000) Silica glass: a material for photonics. J Appl Phys 88:1201–1213

    Article  CAS  Google Scholar 

  7. Agnello S, Boscaino R, Cannas M, Gelardi FM (2001) Instantaneous diffusion effect on spin-echo decay: experimental investigation by spectral selective excitation. Phys Rev B 64:174423–174428

    Article  Google Scholar 

  8. Pacchioni G, Skuja L, Griscom DL (eds) (2000) Defects in SiO2 and related dielectrics. Science and Technology. Kluwer Academic, Dordrecht

    Google Scholar 

  9. Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non Cryst Solids 239:16–48

    Article  CAS  Google Scholar 

  10. Boero M, Pasquarello A, Sarnthem J, Car R (1997) Structure and hyperfine parameters of E 1 centers in α-quartz and in vitreous SiO2. Phys Rev Lett 78:887–890

    Article  CAS  Google Scholar 

  11. Pacchioni G, Skuja L, Griscom DL (eds) (2000) Defects in SiO2 and related dielectric science and technology. Kluwer Academic, Dordrecht

    Google Scholar 

  12. Weeks RA (1956) Paramagnetic resonance of lattice defects in irradiated Quartz. J Appl Phys 27:1376–1381

    Article  CAS  Google Scholar 

  13. Fedaruk F, Zukowski P (2005) Dressed state EPR nutations of E1′ centers in neutron-irradiated quartz. Vacuum 78:473–476

    Article  CAS  Google Scholar 

  14. Silsbee RH (1961) Electron spin resonance in neutron-irradiated quartz. J Appl Phys 32:1459–1469

    Article  CAS  Google Scholar 

  15. Yip KL, Fowler WB (1975) Electronic structure of E 1 centers in SiO2. Phys Rev B 11:2327–2338

    Article  CAS  Google Scholar 

  16. Griscom DL, Gingerish ME, Friebele EJ (1993) Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose. Phys Rev Lett 71:1019–1022

    Article  CAS  Google Scholar 

  17. Imai H, Hirashima H (1994) Intrinsic- and extrinsic-defect formation in silica glasses by radiation. J Non Cryst Solids 179:202–213

    Article  CAS  Google Scholar 

  18. Galeener FL, Kerwin DB, Miller AJ, Mikkelsen JC Jr (1993) X-ray creation and activation of electron spin resonance in vitreous silica. Phys Rev B 47:7760–7779

    Article  CAS  Google Scholar 

  19. Mashkov VA, Austin WR, Zhang L, Leisure RG (1996) Fundamental role of creation and activation in radiation-induced defect production in high-purity amorphous SiO2. Phys Rev Lett 76:2926–2929

    Article  CAS  Google Scholar 

  20. Brustolon M, Zoleo A, Lund A (1999) Spin concentration in a possible EPR dosimeter: an electron spin echo on X-irradiated ammonium tartrate. J Magn Res 137:389–396

    Article  CAS  Google Scholar 

  21. Lmai H, Hirashima H (1994) Intrinsic- and extrinsic-defect formation in silica glasses by radiation. J Non-Cryst Solid 179:202–213

    Article  Google Scholar 

  22. Bossoli RB, Jani MG, Halliburton LE (1982) Radiation-induced E″ centers in crystalline SiO2. Solid State Commun 44(2):213–217

    Article  CAS  Google Scholar 

  23. Tomozawa MJ (1985) Water in glass. J Non-Cryst Solids 73:197–204

    Article  CAS  Google Scholar 

  24. Efimov AM, Pogareva VG, Shashkin AV (2003) Water-related bands in the IR spectra of silicate glasses. J Non-Cryst Solids 332:93–114

    Article  CAS  Google Scholar 

  25. Geotti-Bianchini F, Pero M, Guglielmi M, Pantano CG (2003) Infrared reflectance spectra of semitransparent SiO2 rich films on silicate glasses: influence of the substrate and film thickness. J Non-Cryst Solids 321:110–119

    Article  CAS  Google Scholar 

  26. MacDonald SA, Schardt CR, Masiello DJ, Simmons JH (2000) Dispersion analysis of FTIR reflection measurements in silicate glasses. J Non-Cryst Solids 275:72–82

    Article  CAS  Google Scholar 

  27. Efimov AM, Pogareva VG (2006) IR absorption spectra of vitreous silica and silicate glasses: the nature of bands in the 1,300–5,000 cm−1 region. Chem Geol 229:198–217

    Article  CAS  Google Scholar 

  28. Haken U, Humbach O, Ortner S, Fabian H (2000) Refractive index of silica glass: influence of fictive temperature. J Non-Cryst Solids 265:9–18

    Article  CAS  Google Scholar 

  29. Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non-Cryst Solids 201:177–198

    Article  CAS  Google Scholar 

  30. Bartholomew RF (1983) High-water containing glasses. J Non-Cryst Solids 56:331–342

    Article  CAS  Google Scholar 

  31. Ezz-Eldin FM, Abdel-Aziz TD, Elalaily NA (2010) Effect of HF on chemical, optical and mechanical properties of soda–lime–silica glass. J Mater Sci 45:5937–5949

    Article  CAS  Google Scholar 

  32. Stapelbrock M, Griscom DL, Friebele EJ, Sigel GH Jr (1979) Oxygen-associated trapped-hole centers in high-purity fused silicas. J Non-Cryst Solids 32:313–326

    Article  Google Scholar 

  33. Friebele EJ, Griscom DL, Stapelbrock M, Weeks RA (1979) Fundamental defect centers in glass: the peroxy radical in irradiated high-purity fused silica. Phys Rev Lett 42:1346–1349

    Article  CAS  Google Scholar 

  34. Griscom DL, Friebele EJ (1981) Fundamental defect centers in glass: 29Si hyperfine structure of the nonbridging oxygen hole center and the peroxy radical in a-SiO2. Phys Rev B 24:4896–4898

    Article  CAS  Google Scholar 

  35. Nuttal RHD, Weil JA (1980) Two hydrogenic trapped-hole species in alpha-quartz. Solid State Commun 33:99–102

    Article  Google Scholar 

  36. Griscom DL (1984) Characterization of three E′-center variants in X- and γ-irradiated high-purity a-SiO2. Nucl Inst Method Phys Res B1:481–488

    Article  Google Scholar 

  37. Agnello S, Boscaino R, Canas M, Gelardi FM (2000) Creation of paramagnetic defects by gamma irradiation in amorphous silica. Appl Magn Res 19:579–585

    Article  CAS  Google Scholar 

  38. Agnello S, Boscaino R, Gelardi FM, Boizoi B (2001) Weak hyperfine interaction of E′ centers in γ and β-irradiated silica. J Appl Phys 89:6002–6006

    Article  CAS  Google Scholar 

  39. Agnello S, Gelardi FM, Boscaino R, Canas M, Boizoi B, Petite G (2002) Intrinsic defects induced by β-irradiation in silica. J Nucl Instr Methods Phys Res B 191:387–391

    Article  CAS  Google Scholar 

  40. Pantelides ST, Lu ZY, Nicklaw C, Bakos T, Rashkeev SN, Fleetwood DM, Schrimpf RD (2008) The E′ center and oxygen vacancies in SiO2. J Non-Cryst Solids 354:217–223

    Article  CAS  Google Scholar 

  41. Buscarino G, Agnello S (2007) Experimental evidence of E′ γ centers generation from oxygen vacancies in a-SiO2. J Non-Cryst Solids 353:577–580

    Article  CAS  Google Scholar 

  42. Ahmed AA, Ezz-Eldin FM (1994) Effect of heat-treatment and γ-irradiation on the spectral absorption of soda–lime–silica glasses. Glastec Ber Glass Sci Technol J 65(C2):257–260

    Google Scholar 

  43. Ezz-Eldin FM, Abdel-Rehim F, Abdel-Azim AA, Ahmed AA (1994) Soda–lime–silica glass for radiation dosimetry. Med Phys J 21(7):1085–1089

    Article  CAS  Google Scholar 

  44. Buscarino G, Agnello S, Gelardi FM (2006) 29Si hyperfine structure of the E′ α center in amorphous silicon dioxide. Phys Rev Lett 97(13):35502–35505

    Article  Google Scholar 

  45. Agnello S, Chiodini N, Paleari A, Parlato A (2007) E′ γ-centers induced by γ-irradiation in sol–gel synthesized oxygen deficient amorphous silicon dioxide. J Non-Cryst Solids 353:573–576

    Article  CAS  Google Scholar 

  46. Gallener FL (1985) Raman and ESR studies of the thermal history of amorphous SiO2. J Non-Cryst Solids 71:373–386

    Article  Google Scholar 

  47. Beckers JVL, de Leeuw SAW (2000) Molecular dynamics simulation of nanoporous silica. J Non-Cryst Solids 261:87–100

    Article  CAS  Google Scholar 

  48. Griscom DL, Stapelbrock M, Friebele EJ (1983) ESR studies of damage processes in X-irradiated high purity a-SiO2: OH and characterization of the formyl radical defect. J Chem Phys 78:1638–1651

    Article  CAS  Google Scholar 

  49. Kordas G, Camara B, Oel HJ (1985) Electron spin resonance studies of radiation damage in silicate glasses. J Non-Cryst Solids 50:79–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, H.H., Mansour, A. & Ezz-Eldin, F.M. Generation and bleaching of E′-centers induced in a-SiO2 by γ-irradiation. J Radioanal Nucl Chem 302, 261–272 (2014). https://doi.org/10.1007/s10967-014-3174-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3174-2

Keywords

Navigation