Skip to main content
Log in

Gradual transformation of Ca(OH)2 into CaCO3 on cement hydration

XRD study

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The low temperature of decomposition of some calcium carbonates and the bending of the TG curves of hydrated cement between 500 and 800°C suggested the presence of some complex compound(s), which needed complementary investigation (XRD, TG). Stepwise transformation of portlandite (and/or lime) into calcium carbonate, with intermediate steps of calcium carbonate hydroxide hydrates (CCH-1 to CCH-5), was indicated by the previous study of two OPC.

This was checked here on four cements ground for t g=15, 20, 25 and 30 min and hydrated either in water vapour, successively at RH=1.0, 0.95 and 0.5 for 2 weeks each (WR1, WR2 and WR3, respectively) or as mortars in liquid water (1m), followed by WR as above. The d[001] spacing of portlandite was confirmed to vary: here between the lowest and the highest standard values. The diffractograms of n=32 different samples were analyzed for presence of standard CCH peaks, generally slightly displaced. These were: CCH-1 [Ca3(CO3)2(OH)2]: N=11 peaks, of three different d[hkl] spacings, CCH-2 [Ca6(CO2.65)2(OH657)7(H2O)2]: N=10 for two d[hkl], CCH-3 [Ca3(CO3)2(OH)2·1.5H2O]: N=14 for five d[hkl], CCH-4, ikaite [CaCO3(H2O)6]: N=13 for six d[hkl], CCH-5[CaCO3(H2O)]: N=15 for five d[hkl]. Thus the most probable is the presence of the last three. The stepwise transformation of Ca(OH)2 into CaCO3 was confirmed:

portlandite (varying d[001])→CCH-1→CCH-2→CCH-3→CCH-4→CCH-5→CaCO3

The content of CCH was the highest at t gr=15 min, decreasing down to t gr=25 min and increasing slightly at 30 min, as inferred from the number of the peaks observed. After cement powder hydration at RH=1.0 (WR1) peak number increased gradually from CCH-1 to CCH-5, whereas in the hydrated mortar (1m) the peak number decreased from CCH-1 to CCH-5, indicating the respective progress of the carbonation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SC Mojumdar K Mazanec M Drabik (2006) J. Therm. Anal. Cal. 83 135 Occurrence Handle10.1007/s10973-005-7045-5 Occurrence Handle1:CAS:528:DC%2BD28XitF2ntrk%3D

    Article  CAS  Google Scholar 

  2. C Tomasi O Ricci G Perotti P Ferloni (2006) J. Therm. Anal. Cal. 84 33 Occurrence Handle10.1007/s10973-005-7264-9 Occurrence Handle1:CAS:528:DC%2BD28XjsVOmsb0%3D

    Article  CAS  Google Scholar 

  3. RMH Lawrence TJ Mays P Walker D D’Ayala (2006) J. Therm. Anal. Cal. 85 377 Occurrence Handle10.1007/s10973-005-7302-7 Occurrence Handle1:CAS:528:DC%2BD28Xptlagsbc%3D

    Article  CAS  Google Scholar 

  4. I Janotka SC Mojumdar (2005) J. Therm. Anal. Cal. 81 197 Occurrence Handle10.1007/s10973-005-0767-6 Occurrence Handle1:CAS:528:DC%2BD2MXlslOltrk%3D

    Article  CAS  Google Scholar 

  5. ET Stepkowska JM Martinez-Blanes A Justo MA Aviles JL Perez-Rodriguez (2005) J. Therm. Anal. Cal. 80 193 Occurrence Handle10.1007/s10973-005-0635-4 Occurrence Handle1:CAS:528:DC%2BD2MXktl2ksro%3D

    Article  CAS  Google Scholar 

  6. ET Stepkowska (2005) J. Therm. Anal. Cal. 80 727 Occurrence Handle10.1007/s10973-005-0721-7 Occurrence Handle1:CAS:528:DC%2BD2MXks1CjtLw%3D

    Article  CAS  Google Scholar 

  7. ET Stepkowska (2006) J. Therm. Anal. Cal. 84 1 Occurrence Handle10.1007/s10973-005-7179-5 Occurrence Handle1:CAS:528:DC%2BD28XjsVOntbc%3D

    Article  CAS  Google Scholar 

  8. ET Stepkowska JM Bijen JL Perez-Rodriguez A Justo PJ Sanchez-Soto MA Aviles (1994) J. Thermal Anal. 42 41 Occurrence Handle10.1007/BF02546991 Occurrence Handle1:CAS:528:DyaK2cXmtFWmsro%3D

    Article  CAS  Google Scholar 

  9. G Schimmel (1970) Natura 57 38 Occurrence Handle1:CAS:528:DyaE3cXosFKqtQ%3D%3D

    CAS  Google Scholar 

  10. G Schimmel (1970) Phys. Blatter 5 213

    Google Scholar 

  11. BW Liebich H Sarp (1985) Schweiz. Mineral. Petrogr. Mitt. 65 153 Occurrence Handle1:CAS:528:DyaL28XmtFOjsr8%3D

    CAS  Google Scholar 

  12. D. Smith and Schultz, Penn State University, University Park, Pennsylvania, USA, ICD Grant-in-Aid (1983).

  13. A. Winchell and H. Winchell, Microscopic Character of Artificial Inorg. Solid Sub. 95, 1964.

  14. B Dickens WE Brown (1970) Inorg. Chem. 9 480 Occurrence Handle10.1021/ic50085a010 Occurrence Handle1:CAS:528:DyaE3cXpsVWqug%3D%3D

    Article  CAS  Google Scholar 

  15. KF Hesse H Kueppers E Suess (1983) Z. Kristallogr. 163 227 Occurrence Handle1:CAS:528:DyaL3sXlsl2itLo%3D Occurrence Handle10.1524/zkri.1983.163.3-4.227

    Article  CAS  Google Scholar 

  16. G Taylor (1975) Am. Mineral. 60 690 Occurrence Handle1:CAS:528:DyaE2MXls1Kqtbw%3D

    CAS  Google Scholar 

  17. H Effenberger (1981) Monatsh. Chem. 112 899 Occurrence Handle10.1007/BF00905061 Occurrence Handle1:CAS:528:DyaL3MXls1Sgtr4%3D

    Article  CAS  Google Scholar 

  18. H Effenberger K Lueger-Ging (1980) European Crystallographic Meeting 6 107

    Google Scholar 

  19. ET Stepkowska JL Perez-Rodriguez MJ Sayagues JM Martinez-Blanes (2003) J.Therm. Anal. Cal. 73 247 Occurrence Handle10.1023/A:1025158213560 Occurrence Handle1:CAS:528:DC%2BD3sXmt1emt70%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Perez-Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepkowska, E.T., Aviles, M.A., Blanes, J.M. et al. Gradual transformation of Ca(OH)2 into CaCO3 on cement hydration. J Therm Anal Calorim 87, 189–198 (2007). https://doi.org/10.1007/s10973-006-7840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7840-7

Keywords

Navigation