Skip to main content
Log in

Oxidation induction time and oxidation onset temperature of polyethylene in air

Testing Gimzewski’s postulate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oxidation induction times (OIT) and oxidation onset temperatures (OOT) of a low density polyethylene melt were evaluated in air using DSC. Good regression fits to OOT data were obtained using global values for the activation energy (E) that are specific for each antioxidant but assumed independent of concentration. Gimzewski’s postulate that OIT and OOT correspond to the same level of antioxidant depletion was tested by attempting to predict OIT values from OOT generated model parameters. The deviations between predicted and experimental OIT values were comparable in magnitude to the inherent scatter in the data. However, regression of the dynamic OOT data yielded statistically significant lower values for the activation energy than are obtained by direct regression of isothermal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bolland JL, Gee G. Kinetic studies in the chemistry of rubber and related materials. II. The effect of oxidation of unconjugated olefins. Trans Faraday Soc. 1946;42:236–43.

    Article  CAS  Google Scholar 

  2. Colin X, Verdu J. Polymer degradation during processing. C R Chimie. 2006;9:1380–95.

    CAS  Google Scholar 

  3. Al-Malaika S. Perspectives in stabilisation of polyolefins. Adv Polym Sci. 2004;169:121–50.

    CAS  Google Scholar 

  4. Malík J, Kröhnke C. Polymer stabilization: present status and possible future trends. C R Chimie. 2006;9:1330–7.

    Google Scholar 

  5. Gömöry I, Čech K. A new method for measuring the induction period of the oxidation of polymers. J Thermal Anal. 1971;3:57–62.

    Article  Google Scholar 

  6. Gimzewski E. The relationship between oxidation induction temperatures and times for petroleum products. Thermochim Acta. 1992;198:133–40.

    Article  CAS  Google Scholar 

  7. Šimon P, Kolman L. DSC study of oxidation induction periods. J Thermal Anal Calorim. 2001;64:813–20.

    Article  Google Scholar 

  8. Shlyapnikov YA, Tyuleneva NK. Inhibited oxidation of polyethylene: anatomy of induction period. Polym Degrad Stab. 1997;56:311–5.

    Article  CAS  Google Scholar 

  9. Pospíšil J, Horák Z, Pilař J, Billingham NC, Zweifel H, Nešpůrek S. Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation. Polym Degrad Stab. 2003;82:145–62.

    Article  Google Scholar 

  10. Koutný M, Václavkováa T, Matisová-Rychlá L, Rychlá J. Characterization of oxidation progress by chemiluminescence: a study of polyethylene with pro-oxidant additives. Polym Degrad Stab. 2008;93:1515–9.

    Article  Google Scholar 

  11. Brown GP, Haarr DT, Metlay M. The use of thermal analysis methods for the estimation of thermal life ratings of magnet wire enamels. IEEE Trans Electric Insulat. 1973;EI-8:36–41.

    Article  Google Scholar 

  12. Gedde UW, Jansson J-F. Determination of thermal oxidation of high density polyethylene pipes using differential scanning calorimetry. Polym Test. 1980;1:303–12.

    Article  CAS  Google Scholar 

  13. Budrugeac P. Lifetime prediction for polymers via the temperature of initial decomposition. J Thermal Anal Calorim. 2001;65:309–12.

    Article  CAS  Google Scholar 

  14. Mason LR, Reynolds AB. Standardization of oxidation induction time testing used in life assessment of polymeric electric cables. J Appl Polym Sci. 1997;66:1691–702.

    Article  CAS  Google Scholar 

  15. Mason LR, Reynolds AB. Comparison of oxidation induction time measurements with values derived from oxidation induction temperature measurements for EPDM and XLPE polymers. Polym Eng Sci. 1998;38:1149–53.

    Article  Google Scholar 

  16. Schmid M, Ritter A, Affolter S. Determination of oxidation induction time and temperature by DSC. Results of round robin test. J Thermal Anal Calorim. 2006;83:367–71.

    Article  CAS  Google Scholar 

  17. Blaine RL, Lundgren CJ, Harris MB. Oxidative induction time – a review of DSC experimental effects. ASTM STP 1326 (1997).

  18. Blaine RL, Riga AT. Recertification of the polyethylene oxidation induction time reference material. Thermochim Acta. 2003;399:209–12.

    Article  CAS  Google Scholar 

  19. Goh SH. Further study on the prediction of isothermal induction time by dynamic differential scanning calorimetry. Thermochim Acta. 1984;80:75–80.

    Article  CAS  Google Scholar 

  20. Goh SH. Thermoanalytical studies of rubber oxidation: correlation of activation energy, isothermal induction time and oxidation peak temperature. Thermochim Acta. 1984;77:275–80.

    Article  CAS  Google Scholar 

  21. Šimon P. Induction periods. J Thermal Anal Calorim. 2006;84:263–70.

    Article  Google Scholar 

  22. Madhusudanan PM, Krishnan K, Ninan KN. A new approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97:189–201.

    Article  CAS  Google Scholar 

  23. Gugumus F. Re-examination of the thermal oxidation reactions of polymers 2. Thermal oxidation of polyethylene. Polym Degrad Stab. 2002;76:329–40.

    Article  CAS  Google Scholar 

  24. Gugumus F. Re-examination of the thermal oxidation reactions of polymers 3. Various reactions in polyethylene and polypropylene. Polym Degrad Stab. 2002;77:147–55.

    Article  CAS  Google Scholar 

  25. Boersma A. Predicting the efficiency of antioxidants in polymers. Polym Degrad Stab. 2006;91:472–8.

    Article  CAS  Google Scholar 

  26. Colin X, Audouin L, Verdu J. Determination of thermal oxidation rate constants by an inverse method. Application to polyethylene. Polym Degrad Stab. 2004;86:309–21.

    Article  CAS  Google Scholar 

  27. Šimon P. Considerations on the single-step kinetics approximation. J Thermal Anal Calorim. 2005;82:651–7.

    Article  Google Scholar 

  28. Anderson HL, Kemmler A, Hohne GWH, Heldt K, Strey R. Round Robin tests on the kinetic evaluation of a solid-state reaction from 13 European laboratories. Part 1. Kinetic TG-analysis. Thermochim Acta. 1999;322:33–53.

    Article  Google Scholar 

  29. Galwey AK, Brown ME. Application of the Arrhenius equation to solid state kinetics: can this be justified? Thermochim Acta. 2002;386:91–8.

    Article  CAS  Google Scholar 

  30. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  31. Flynn JH. The ‘Temperature Integral’ – its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  32. Ji LQ. New rational fraction approximating formulas for the temperature integral. J Thermal Anal Calorim. 2008;91:885–9.

    Article  CAS  Google Scholar 

  33. Focke WW, Smit MS, Tolmay AT, van der Walt LS, van Wyk WL. Differential scanning calorimetry analysis of thermoset cure kinetics: phenolic resole resin. Polym Eng Sci. 1991;31:1665–85.

    Article  CAS  Google Scholar 

  34. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  35. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  36. Šimon P, Hynek D, Malíková M, Cibulková Z. Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. J Thermal Anal Calorim. 2008;93:817–21.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research, from the Institutional Research Development Programme (IRDP) and the THRIP program of the Department of Trade and Industry and the National Research Foundation of South Africa as well as Xyris Technology CC, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter W. Focke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Focke, W.W., van der Westhuizen, I. Oxidation induction time and oxidation onset temperature of polyethylene in air. J Therm Anal Calorim 99, 285–293 (2010). https://doi.org/10.1007/s10973-009-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0097-1

Keywords

Navigation