Skip to main content
Log in

Thermodynamic study of the process of micellization of long chain alkyl pyridinium salts in aqueous solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molality dependence of specific conductivity of pentadecyl bromide, cetylpyridinium bromide and cetylpiridinium chloride in aqueous solutions has been studied in the temperature range of 30–45 °C. The critical micelle concentration (cmc) and ionization degree of the micelles, β, were determined directly from the experimental data. Thermal parameters, such as standard Gibbs free energy \( \Updelta G_{m}^{0} , \) enthalpy \( \Updelta H_{m}^{0} \) and entropy \( \Updelta S_{m}^{0} , \) of micellization were estimated by assuming that the system conforms to the pseudo-phase separation model. The change in heat capacity on micellization \( \Updelta C_{p} , \) was estimated from the temperature dependence of \( \Updelta H_{m}^{0} . \) An enthalpy–entropy compensation phenomenon for the studied system has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jönson B, Lindman B, Holmberg K, Kronberg B. Surfactants and polymers in aqueous solution. 1st ed. Chichester: John Wiley and Sons; 1998.

    Google Scholar 

  2. Galán JJ, González-Pérez A, Del Castillo JL, Rodríguez JR. Thermal parameters associated to micellization of dodecylpyridinium bromide and chloride in aqueous solution. J Therm Anal Calorim. 2002;70:229–34.

    Article  Google Scholar 

  3. Galán JJ, González-Pérez A, Rodríguez JR. Micellization of dodecyldimethylethyl-ammonium bromide in aqueous solution: thermal parameters. J Therm Anal Calorim. 2003;72:465–70.

    Article  Google Scholar 

  4. Myers D. Surfactant science and technology. 2nd ed. New York: VHC Publishers; 1992.

    Google Scholar 

  5. Starks CM, Liotta CL, Halpern MH. Phase transfer catalysis: fundamentals, applications and industrial perspectives. 1st ed. London: Chapman and Hall; 1994.

    Book  Google Scholar 

  6. Goworek J, Agnieszka K, Gac W, Borówka A, Kusak R. Thermal degradation of CTAB in AS-synthesized MCM-41. Therm Anal Calorim. 2009;96(2):375–82.

    Article  CAS  Google Scholar 

  7. Liu R, Yang J, Sun C, Wu X, Li L, Su B. Study on the interaction between nucleic acids and cationic surfactants. Colloid Surf B. 2004;34:59–63.

    Article  Google Scholar 

  8. Kozak M, Domka L, Jurga S. Interactions of cationic surfactants with DPPC. J Therm Anal Calorim. 2007;88(2):395–9.

    Article  CAS  Google Scholar 

  9. Trikalitis PN, Rangan KK, Bakas T, Kanatzidis MG. Single-crystal mesostructured semiconductors with cubic Ia3d symmetry and ion-exchange properties. J Am Chem Soc. 2002;124(41):12255–60.

    Article  CAS  Google Scholar 

  10. Eisenschmidt K, Lanio T, Simoncsits A, Jeltsch A, Pingoud V, Wende W, et al. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res. 2005;33:7039–47.

    Article  CAS  Google Scholar 

  11. Mishraa A, Beheraa RK, Mishrab BK, Beherab GB. Dye–surfactant interaction: chain folding during solubilization of styryl pyridinium dyes in sodium dodecyl sulfate aggregates. J Photochem Photobiol A. 1999;121(1):63–73.

    Article  Google Scholar 

  12. Ghosh KK, Roy S. Thermodynamics of micelle formation of some cationic surfactants as a function of temperature and solvent. Indian J Chem B. 1998;37(9):875–80.

    Google Scholar 

  13. Monk CB. Electrolytic dissociation. 1st ed. London: Academic Press; 1961.

    Google Scholar 

  14. Skerjanc J, Kogej K, Cerar J. Equilibrium and transport properties of alkylpyridinium bromides. Langmuir. 1999;15:5023–8.

    Article  CAS  Google Scholar 

  15. Fujio K, Mitsui T, Kurumizawa H, Tanaka Y, Uzu Y. Solubilization of water-insoluble dye in aqueous solutions of alkylpyridinium bromides and its relation to micellar size and shape. Colloid Polym Sci. 2004;282:223–9.

    Article  CAS  Google Scholar 

  16. Gharibi H, Palepu R, Bloor DM, Hall DG, Wyn-Jones E. Electrochemical studies associated with micellization of cationic surfactants in ethylene glycol. Langmuir. 1992;8:782–7.

    Article  CAS  Google Scholar 

  17. Malsch J, Hartley G. The wien effect of a long-chain salt in aqueous solutions and for short impact duration of pratical alterations of measurement. Z Phys Chem. 1934;170:321–36.

    Google Scholar 

  18. Molinero I, Sierra ML, Valientes M, Rodenas E. Physical properties of cetylpyridinium chloride micelles and their behaviour as reaction media. J Chem Soc Faraday Trans. 1996;92:59–63.

    Article  CAS  Google Scholar 

  19. Chen LJ, Lin SY, Huang CC. Effect of hydrophobic chain of surfactants on enthalpy–entropy compensation of micellization. J Phys Chem B. 1998;102:4350–6.

    Article  CAS  Google Scholar 

  20. Galán JJ, González-Pérez A, Seijas JA, Uriarte E, Rodríguez JR. Effect of counterion on thermodynamic micellar properties of tetradecylpyridinium in aqueous solution. Colloid Polym Sci. 2005;283:456–60.

    Article  Google Scholar 

  21. Zielinsky R, Ikeda S, Nomura H, Kato S. Adiabatic compressibility of alkyltrimethylammonium bromides in aqueous solution. J Colloid Interface Sci. 1987;119:398–408.

    Article  Google Scholar 

  22. González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR. Micellar behaviour of tetradecyldimethylbenzylammonium chloride in water-alcohol mixtures. J Colloid Interface Sci. 2003;262(2):525–30.

    Article  Google Scholar 

  23. Moroi Y. Micelles: theoretical and applied aspects. New York: Plenum Press; 1992.

    Book  Google Scholar 

  24. Mehrian T, Keizer A, Korteweg AJ, Lyklema J. Thermodynamics of micellization of n-alkylpyridinium chlorides. Colloids Surf A. 1993;71:255–67.

    Article  CAS  Google Scholar 

  25. Muller N. Temperature dependence of critical micelle concentrations and heat capacities of micellization for ionic surfactants. Lagmuir. 1993;9(1):96–100.

    Article  CAS  Google Scholar 

  26. Sugihara G, Hisatomi M. Entalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J Colloid Interface Sci. 1999;219:31–6.

    Article  CAS  Google Scholar 

  27. Tartar HV. CMC of aqueous solutions of paraffin chain salts regarded as a function of thickness of ionic atmosphere. J Colloid Sci. 1962;17(3):243–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks for the financial support of the Dirección Xeral de I + D+I of the Xunta de Galicia and the European Regional Development Fund (INCITE07PXI206076ES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Galán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galán, J.J., Rodríguez, J.R. Thermodynamic study of the process of micellization of long chain alkyl pyridinium salts in aqueous solution. J Therm Anal Calorim 101, 359–364 (2010). https://doi.org/10.1007/s10973-009-0385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0385-9

Keywords

Navigation