Skip to main content
Log in

Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization of isotactic poly(4-methyl-pentene-1) (P4MP1) is studied by differential scanning calorimeter (DSC), and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Z c) are determined. From the cooling and melting curves of P4MP1 at different cooling rates, the crystalline enthalpy increases with the increasing cooling rate, but the degree of crystalline by DSC measurement shows not much variation. Degree of crystalline of P4MP1 calculated by wide angle X-ray diffraction pattern shows the same tendency with crystalline enthalpy, indicating that re-crystallization occurs when samples heated above the second glass transition temperature of P4MP1. By Jeziorny analysis, n 1 value suggests that mainly spherulites’ growth at 2.5 K min−1 transforms into a mixture mode of three-dimensional and two-dimensional space extensions with further increasing cooling rate. In the secondary crystallization process, n 2 values indicate that the secondary crystallization is mainly the two-dimensional extension of the lamellar crystals formed during the primary crystallization process. The rates of the crystallization, Z c and t 1/2 both increase obviously with the increase of cooling rate, especially at the primary crystallization stage. By Mo’s method, higher cooling rate should be required in order to obtain a higher degree of crystallinity at unit crystallization time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kusanagi H, Takase M, Chatani Y, Tadokoro H. Crystal structure of isotactic poly(4-methyl-1-pentene). J Polym Sci Polym Phys Ed. 1978;16:131–42.

    Article  CAS  Google Scholar 

  2. Griffith HJ, Råndy GB. Dilatometric measurements on poly(4-methyl-1-pentene) glass and melt transition temperatures, crystallization rates, and unusual density behavior. J Polym Sci. 1960;44:369–81.

    Article  CAS  Google Scholar 

  3. Rastogi S, Newman M, Keller A. Unusual pressure-induced phase behavior in crystalline poly-4-methyl-pentene-1. J Polym Sci B Polym Phys. 1993;31:125–39.

    Article  CAS  Google Scholar 

  4. Samuel EJJ, Mohan S. FTIR and FT Raman spectra and analysis of poly(4-methyl-1-pentene). Spectrochim Acta A. 2004;60:19–24.

    Article  Google Scholar 

  5. Tanigami T, Miyasaka K. Small-angle x-ray scattering of isotactic poly(4-methyl-1-pentene). J Polym Sci Polym Phys Ed. 1981;19:1865–71.

    Article  CAS  Google Scholar 

  6. Tanigami T, Yamaura K, Matsuzawa S, Miyasaka K. Thermal expansion of crystal lattice of isotactic poly(4-methyl-1-pentene). Polym J. 1986;18:35–40.

    Article  CAS  Google Scholar 

  7. Reddy S, Desai P, Abhiraman SA, Beckham WH, Kulik SA, Spiess WH. Structure and temperature-dependent properties of poly(4-methyl-1-pentene) fibers. Macromolecules. 1997;30:3293–301.

    Article  CAS  Google Scholar 

  8. Chan SK, Råndy G, Brumberger H, Odajima A. NMR measurements on isotactic poly(4-methyl-1-pentene). J Polym Sci. 1962;61:S29–32.

    Article  CAS  Google Scholar 

  9. Miyoshi T, Pascui O, Reichert D. Helical jump motions in isotactic poly(4-methyl-1-pentene) crystallites revealed by 1D MAS exchange NMR spectroscopy. Macromolecules. 2002;35:7178–81.

    Article  CAS  Google Scholar 

  10. Miyoshi T, Pascui O, Reichert D. Slow chain dynamics in isotactic-poly(4-methyl-1-pentene) crystallites near the glass transition temperature characterized by solid-state C-13 MAS exchange NMR. Macromolecules. 2004;37:6460–71.

    Article  CAS  Google Scholar 

  11. Rastogi S, Newman M, Keller A. Pressure-induced amorphization and disordering on cooling in a crystalline polymer. Nature. 1991;353:55–7.

    Article  CAS  Google Scholar 

  12. Rastogi S, Hohne GWH, Keller A. Unusual pressure-induced phase behavior in crystalline poly(4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules. 1999;32:8897–909.

    Article  CAS  Google Scholar 

  13. Danch A, Osoba W. Structural relaxation of the constrained amorphous phase in the glass transition zone. J Therm Anal Calorim. 2003;72:641–50.

    Article  CAS  Google Scholar 

  14. Danch A, Osoba W. The nature of the amorphous phase in resultant engineering products. J Mater Process Technol. 2004;155–156:1428–34.

    Article  Google Scholar 

  15. Danch A, Osoba W. Thermal analysis and free volume study of polymeric supermolecular structures. J Therm Anal Calorim. 2004;78:923–32.

    CAS  Google Scholar 

  16. Danch A, Osoba W. Stability of supermolecular structure below Tg. J Therm Anal Calorim. 2006;84:79–83.

    Article  CAS  Google Scholar 

  17. Seguela R, Rietsch F. On the isomorphism of ethylene/alpha-olefin copolymers. J Polym Sci C Polym Lett. 1986;24:29–33.

    Article  CAS  Google Scholar 

  18. Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J Polym Sci B Polym Phys. 1998;34:1301–15.

    Article  Google Scholar 

  19. Kim MH, Phillips PJ. Nonisothermal melting and crystallization studies of homogeneous ethylene/alpha-olefin random copolymers. J Appl Polym Sci. 1998;70:1893–905.

    Article  CAS  Google Scholar 

  20. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules. 1999;32:6221–35.

    Article  CAS  Google Scholar 

  21. Liu JP, Zhang FJ, Fu Q, Liu TB. Influence of short chain branches on crystallization and melting behaviors of low molecular weight polyethylenes. Acta Polym Sin. 2001;4:228–31.

    Google Scholar 

  22. Liu JP, He TB. Structure, morphology and melting behaviors of metallocene-catalyzed branched polyethylene. Chin J Polym Bull. 2002;3:52–7.

    Article  Google Scholar 

  23. Somrang N, Nithitanakul M, Grady BP, Supaphol P. Non-isothermal melt crystallization kinetics for ethylene-acrylic acid copolymers and ethylene-methyl acrylate-acrylic acid terpolymers. Eur Polym J. 2004;40:829–38.

    Article  CAS  Google Scholar 

  24. Di Lorenzo ML, Righetti MC. The three-phase structure of isotactic poly(1-butene). Polymer. 2008;49:1323–31.

    Article  CAS  Google Scholar 

  25. Coppola S, Acierno S, Grizzuti N, Vlassopoulos D. Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization. Macromolecules. 2006;39:1507–14.

    Article  CAS  Google Scholar 

  26. Kolesov IS, Androsch R, Radusch HJ. Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branches. J Therm Anal Calorim. 2004;78:885–95.

    CAS  Google Scholar 

  27. Gupta P, Wilkes GL, Sukhadia AM, Krishnaswamy RK, Lamborn MJ, Wharry SM, Tso CC, DesLauriers PJ, Mansfield T, Beyer FL. Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst. Polymer. 2005;46:8819–37.

    CAS  Google Scholar 

  28. Brandrup J, Immergut EH. Polymer handbook. New York: Wiley; 1999. p. 736–40.

    Google Scholar 

  29. Cornelia Vasile C, Seymour RB. Handbook of polyolefins—synthesis and properties. New York: Marcel Dekker, Inc.; 1993.

    Google Scholar 

  30. Stribeck N, Interpretation of scattering patterns. In X-ray scattering of soft matter. New York: Springer; 2007. p. 103–5.

  31. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.

    Article  CAS  Google Scholar 

  32. Zhang J, Chen SJ, Su J, Shi XM, Jin J, Wang XL, Xu ZZ. Non-isothermal crystallization kinetics and melting behavior of EAA with different acrylic acid content. J Therm Anal Calorim. 2009;97:959–67.

    Article  CAS  Google Scholar 

  33. Islam MA, Hussein IA, Atiqullah M. Effects of branching characteristics and copolymer composition distribution on non-isothermal crystallization kinetics of metallocene LLDPEs. Eur Polym J. 2007;43:599–610.

    Article  CAS  Google Scholar 

  34. Charlet G, Delmas G. Effect of solvent on the polymorphism of poly(4-methylpentene-1): 2. Crystallization in semi-dilute solutions. Polymer. 1984;25:1619–25.

    Article  CAS  Google Scholar 

  35. Rastogi S, Vega JF, van Ruth NJL, Terry AE. Non-linear changes in the specific volume of the amorphous phase of poly (4-methyl-1-pentene); Kauzmann curves, inverse melting, fragility. Polymer. 2006;47:5555–65.

    Article  CAS  Google Scholar 

  36. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  37. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  38. Ziabicki A. Theoretical analysis of oriented and non-isothermal crystallization – 2. Extension of the Kolmogoroff-Avrami-Evans theory onto processes with variable rates and mechanisms. Colloid Polym Sci. 1974;252:433–47.

    Article  CAS  Google Scholar 

  39. Liu TX, Mo ZS, Wang SG, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2002;23:771–5.

    Article  CAS  Google Scholar 

  41. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  42. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;78:212–24.

    Article  Google Scholar 

  43. Wunderlich B. Macromolecular physics. New York: Academic Press; 1976. p. 147.

    Google Scholar 

  44. Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone). Polymer. 1986;27:1183–92.

    Article  CAS  Google Scholar 

  45. Wunderlich B. Thermal characterization of polymeric materials. 2nd ed. New York: Academic Press; 1997.

    Google Scholar 

  46. Akpalu Y, Kielhorn L, Hsiao BS, Stein RS, Russell TP, van Egmond J, Muthukumar M. Structure development during crystallization of homogeneous copolymers of ethene and 1-octene: time-resolved synchrotron X-ray and SALS measurements. Macromolecules. 1999;32:765–70.

    Article  CAS  Google Scholar 

  47. Strobl GR, Engelke T, Maderek EUG. On the kinetics of isothermal crystallization of branched polyethylene. Polymer. 1983;24:1585–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Jin, J. & Zhang, J. Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1). J Therm Anal Calorim 103, 229–236 (2011). https://doi.org/10.1007/s10973-010-0957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0957-8

Keywords

Navigation