Skip to main content
Log in

Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal kinetics of montmorillonite nanoclay (MMT)/maleic anhydride-modified polypropylene (MAH-PP) composites (PPCNs) is reported here in terms of thermal stability, decomposition, and crystallization kinetics. The effects of MMT nanoclay on the thermal stability of PP in MMT/MAH-PP composites have been examined at different heating rates by means of thermogravimetric (TG) analysis. Based on the TG results, the Ozawa method was applied to determine the activation energies of decomposition for MMT/MAH-PP composites and the results were then verified by the Kissinger method. It was found that the thermal stability of PP was significantly improved in the presence of MMT nanoclay. Differential scanning calorimetry (DSC) was used to study the melting and crystallization behaviors of MMT/MAH-PP composites under various thermal conditions. Using the data from DSC, the Kissinger method was applied to estimate the activation energies of PPCNs which were required during their non-isothermal crystallization. The activation energies of crystallization showed that MMT nanoclay served as a nucleating agent in the non-isothermal crystallization of PP in the PPCNs and as a result, the crystallinity of PP was greatly enhanced. Therefore, the presence of MMT nanoclay in MMT/MAH-PP composites effectively modified the thermal kinetics of PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Weinheim: Wiley-VCH; 2003.

    Book  Google Scholar 

  2. Sahoo NG, Thet NT, Tan QH, Li L, Chan SH, Zhao J, Yu S. Effect of carbon nanotubes and processing methods on the properties of carbon nanotube/polypropylene composites. J Nanosci Nanotechnol. 2009;9:5910–9.

    Article  CAS  Google Scholar 

  3. Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalizaed carbon nanotubes. Prog Polym Sci. 2010;35:837–67.

    Article  CAS  Google Scholar 

  4. Cheng HKF, Sahoo NG, Pan Y, Li L, Chan SH, Zhao J, Chen G. Complementary effects of multi-walled carbon nanotubes and conductive carbon black on polyamide 6. J Polym Sci Polym Phys. 2010;48:1203–12.

    Article  CAS  Google Scholar 

  5. Zheng W, Lu XH, Toh CL, Zheng TH, He C. Effects of clay on polymorphism of polypropylene/clay nanocomposites. J Polym Sci Polym Phys. 2004;42:1810–6.

    Article  CAS  Google Scholar 

  6. Hambir S, Bulakh N, Jog JP. Polypropylene/Clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym Eng Sci. 2002;42:1800–7.

    Article  CAS  Google Scholar 

  7. Maiti P, Nam PH, Okamoto M, Kotaka T, Hasegawa N, Usuki A. The effect of crystallization on the structure and morphology of polypropylene/clay nanocomposites. Polym Eng Sci. 2002;42:1864–71.

    Article  CAS  Google Scholar 

  8. Kato M, Okamoto H, Hasegawa N, Tsukigase A, Usuki A. Preparation and properties of polyethylene-clay hybrids. Polym Eng Sci. 2003;43:1312–6.

    Article  CAS  Google Scholar 

  9. Xu WB, Ge ML, He PS. Non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci Polym Phys. 2002;40:408–14.

    Article  CAS  Google Scholar 

  10. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules. 2002;35:2042–9.

    Article  CAS  Google Scholar 

  11. Qian G, Cho JW, Lan T. Polyolefin nanocomposites; Technical Papers; Nanocor, Inc. 2008. http://www.nanocor.com/tech_papers/properties_polyolefin.asp.

  12. Practical notes for TA DSC 2920. New Castle: TA Instruments Inc. 1990. http://www1.chm.colostate.edu/Files/CIFDSC/dsc2000.pdf.

  13. Ehrenstein GW, Riedel G, Trawiel P. Thermal analysis of plastics, theory and practices. Munich: Hanser Publishers; 2005.

    Google Scholar 

  14. Practical notes for Hi-Res® TGA-2950. New Castle: TA Instruments Inc. 1990. http://www1.chm.colostate.edu/Files/CIFDSC/TGA-MS.pdf.

  15. TA-023. Thermal applications notes. TA Instruments Thermal Analysis and Rheology 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA023.PDF.

  16. Bernhard W. Thermal analysis of polymeric materials. Berlin: Springer; 2005.

    Google Scholar 

  17. Sahoo NG, Cheng HKF, Cai J, Li L, Chan SH, Zhao J, Yu S. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater Chem Phys. 2009;117:313–20.

    Article  CAS  Google Scholar 

  18. Sahoo NG, Cheng HKF, Li L, Chan SH, Judeh Z, Zhao J. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Adv Funct Mater. 2009;19:3962–71.

    Article  CAS  Google Scholar 

  19. Sahoo NG, Cheng HKF, Pan Y, Li L, Chan SH, Zhao J. Strengthening of liquid crystalline polymer by functionalized carbon nanotubes through interfacial interaction and homogeneous dispersion. Polym Adv Technol. 2010. doi: 10.1002/pat.1704.

  20. Cheng HKF, Sahoo NG, Khin TH, Li L, Chan SH, Zhao J, Juay YK. The role of functionalized carbon nanotubes in a PA6/LCP blend. J Nanosci Nanotechnol. 2010;10:5242–51.

    Article  CAS  Google Scholar 

  21. Pramoda KP, Chung TS, Lui SL, Oikawa H, Yamaguchi A. Characterization and thermal degradation of polyimide and polyimide liquid crystalline polymers. Polym Degrad Stabil. 2000;67:365–74.

    Article  CAS  Google Scholar 

  22. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  23. TA-125. Thermal applications notes. TA Instruments Thermal Analysis and Rheology 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA125.PDF.

  24. TA-075. Thermal applications notes. TA Instruments Thermal Analysis and Rheology 1990. http://www.tainstruments.com/library_download.aspx?file=TA075.PDF.

  25. TA-090. Thermal applications notes. TA Instruments Thermal Analysis and Rheology 1990. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA090.PDF.

  26. Labour T, Gautheir C, Seguela R, Vigier G, Bomal Y, Orange G. Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene I. Structural and mechanical characterization. Polymer. 2001;42:7127–35.

    Article  CAS  Google Scholar 

  27. Howe DV. In: Mark JE, editor. Polymer data handbook. London: Oxford University Press; 1999. p. 780–786.

  28. Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J. 2006;42:1994–2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H.K.F., Sahoo, N.G., Lu, X. et al. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim 109, 17–25 (2012). https://doi.org/10.1007/s10973-011-1498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1498-5

Keywords

Navigation