Skip to main content
Log in

Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This investigation deals with thermodynamic analysis, which offers an alternative approach to evaluate the performance of solar dryers and thin-layer drying characteristics of garlic cloves in a developed system. The garlic cloves were dried from a moisture content of 55.5 % (w.b.) to 6.5 % (w.b.) for 8 h. The drying data obtained were fitted to five different drying kinetics models. Of these, the model suggested by Midilli et al. [28] had the best fit with the drying behavior of garlic cloves. The energy efficiency without and with recirculation of the air exiting the drying chamber during the study varied from 43.06 to 83.73 %, and 3.98 to 14.95 %, respectively, while the exergy efficiency corresponding to the energy efficiency of the drying process ranged from 5.01 to 55.30 % and 67.06 to 88.24 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

M e :

moisture content in equilibrium state (dry basis)

M o :

moisture content at t = 0 (dry basis)

M t :

moisture content at t (dry basis)

MR :

Moisture ratio

\( \dot{m}_{\text{a}} \) :

Mass flow rate of air at drying chamber inlet, kg s−1

\( \dot{m}_{\text{s}} \) :

Mass flow rate of solar fluid at drying chamber inlet, kg s−1

\( C_{\text{pa}} \) :

Specific heat of air, J kg−1 K−1

\( C_{\text{pa}} \) :

Specific heat of solar fluid, J kg−1 K−1

T o :

Reference temperature, K

T 1 :

Inlet air temperature at drying chamber, K

T 3 :

Outlet temperature of solar fluid, K

T 4 :

Inlet temperature of solar fluid, K

T 2 :

Air temperature at drying chamber outlet, K

\( \varphi \) :

Exergy efficiency,  %

EUE:

Energy utilization efficiency, %

References

  1. MOFPI. Ministry of Food Processing Industries, Government of India, New Delhi. Annual report, 2010–11. http://www.mofpi.nic.in/images/ar10-11.pdf. Accessed 10.04.12.

  2. Kothari S, Panwar NL, Chaudhri S. Performance evaluation of exhaust air recirculation system of mixed mode solar dryer for drying of onion flakes. Int J Renew Energy Technol. 2009;1:29–41.

    Article  Google Scholar 

  3. El-Sebaii AA, Shalaby SM. Solar drying of agricultural products a review. Renew Sustain Energy Rev. 2012;16:37–43.

    Article  Google Scholar 

  4. Gao W, Lin W, Liu T, Xia C. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Appl Energy. 2007;84:425–41.

    Article  CAS  Google Scholar 

  5. Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl Energy. 2010;87(8):2764–7.

    Article  Google Scholar 

  6. Rathore NS, Panwar NL. Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Technol Environ Policy. 2011;13:125–32.

    Article  CAS  Google Scholar 

  7. Panwar NL, Kaushik SC, Kothari S. Thermal modeling and experimental validation of solar tunnel dryer: a clean energy option for drying surgical cotton. Int J Low-Carbon Tech. 2013. doi:10.1093/ijlct/ctt053.

    Google Scholar 

  8. Hossain MA, Bala BK. Drying of hot chilly using solar tunnel drier. Sol Energy. 2007;81:85–92.

    Article  CAS  Google Scholar 

  9. Sarsavadia PN. Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion. Renew Energy. 2007;32:29–47.

    Article  Google Scholar 

  10. Sreekumar A, Manikantan PE, Vijayakumar KP. Performance of indirect solar cabinet dryer. Energy Convers Manage. 2008;49:1388–95.

    Article  CAS  Google Scholar 

  11. Lamnatou Chr, Papanicolaou E, Belessiotis V, Kyriakis N. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl Energy. 2012;94:232–43.

    Article  CAS  Google Scholar 

  12. Sevik S. Design, experimental investigation and analysis of a solar drying system. Energy Convers Manage. 2013;68:227–34.

    Article  Google Scholar 

  13. Enibe SO. Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Renew Energy. 2003;28:2269–99.

    Article  CAS  Google Scholar 

  14. Madolpa A, Ngwalo G. Solar dryer with thermal storage with biomass back up heater. Sol Energy. 2007;81:449–62.

    Article  Google Scholar 

  15. Amer BMA, Hossain MA, Gottschalk K. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conserv Manag. 2010;51:813–20.

    Article  Google Scholar 

  16. Esakkimuthu S, Hassabou AH, Palaniappan C, Spinnler M, Blumenberg J, Velraj R. Experimental investigation on phase change material based thermal storage system for solar air heating applications. Sol Energy. 2012;88:144–53.

    Article  Google Scholar 

  17. Sharma SD, Sagara K. Latent heat storage materials and systems: a review. Int J Green Energy. 2005;2:1–56.

    Article  Google Scholar 

  18. Sacilikk Unal G. Dehydration characteristics of Kastamonu garlic slices. Biosyst Eng. 2005;92:207–15.

    Article  Google Scholar 

  19. Figiel A. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. J Food Eng. 2009;94:98–104.

    Article  Google Scholar 

  20. Guine RPF, Fernandes RMC. Analysis of the drying kinetics of chestnuts. J Food Eng. 2006;76:460–7.

    Article  Google Scholar 

  21. Nawirska A, Figiel A, Kucharska AZ, Sokoł-Łtowska A, Biesiada A. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J Food Eng. 2009;94:14–20.

    Article  Google Scholar 

  22. Figiel A. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. J Food Eng. 2010;98:461–70.

    Article  Google Scholar 

  23. Panwar NL, Kaushik SC, Kothari S. A review on energy and exergy analysis of solar dying systems. Renew Sustain Energy Rev. 2012;16:2812–9.

    Article  Google Scholar 

  24. O’Callaghan JR, Menzies DJ, Bailey PH. Digital simulation of agricultural drier performance. J Agric Eng Res. 1971;16:223–44.

    Article  Google Scholar 

  25. Diamante LM, Munro PA. Mathematical modeling of thin-layer solar drying of sweet potato slices. Sol Energy. 1993;51:271–6.

    Article  Google Scholar 

  26. Henderson SM, Pabis S. Grain drying theory. Temperature effect on drying coefficient. J Agric Eng Res. 1969;6:169–74.

    Google Scholar 

  27. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans ASAE. 1980;23:1261–71.

    Article  Google Scholar 

  28. Midilli A, Kucuk H, Yapar Z. A new model for single layer drying of some vegetables. Drying Technol. 2002;20:1503–13.

    Article  Google Scholar 

  29. Panwar NL. Experimental and theoretical investigations on thermal energy systems for agricultural and rural applications: energy and exergy analysis. Ph.D. Thesis submitted to IIT Delhi. 2013.

  30. Kaushik SC, Ranjan KR, Panwar NL. Optimum exergy efficiency of single-effect ideal passive solar stills. Energ Effic. 2013;6:595–606.

    Article  Google Scholar 

  31. Ranjan KR, Kaushik SC. Energy, exergy and thermo-economic analysis of solar distillation systems: a review. Renew Sustain Energy Rev. 2013;27:709–23.

    Article  Google Scholar 

  32. Ranjan KR, Kaushik SC. Exergy analysis of the active solar distillation systems integrated with solar ponds. Clean Technol Environ Policy. 2014;16:791–805.

    Article  CAS  Google Scholar 

  33. Dincer I. Thermodynamic, exergy and environmental impact. Energy Sour. 2000;22:723–32.

    Article  CAS  Google Scholar 

  34. Kaushik SC, Singh OK. Estimation of chemical exergy of solid, liquid and gaseous fuels used in thermal power plants. J Therm Anal Calorim. 2014;115:903–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Shringi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shringi, V., Kothari, S. & Panwar, N.L. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim 118, 533–539 (2014). https://doi.org/10.1007/s10973-014-3991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3991-0

Keywords

Navigation