Skip to main content
Log in

A kinetic analysis of thermal decomposition of polyaniline and its composites with rare earth oxides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The decomposition kinetics of the pure polyaniline (PANI), PANI/CeO2 composites, and PANI/Dy2O3 composites were investigated using thermogravimetry (TG) technique under air atmosphere. Two isoconversional methods and multiple linear regression method were used for the evaluation of kinetic parameters from the TG data of different heating rates. The estimation of activation energy values shows that the addition of CeO2 significantly enhances the thermal stability of PANI matrix, while the presence of Dy2O3 slightly reduces the thermal stability of the final composites. The kinetic analysis results show that the kinetic model for the decomposition process for PANI is D3 and for the two kinds of composites is F1–D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chuang FY, Yang SM. Cerium dioxide/polyaniline core–shell nanocomposites. J Colloid Interface Sci. 2008;320:194–201.

    Article  CAS  Google Scholar 

  2. Han DX, Chu Y, Yang LK, Liu Y, Lv ZX. Reversed micelle polymerization: a new route for the synthesis of DBSA–polyaniline nanoparticles. Colloids Surf A. 2005;259:179–87.

    Article  CAS  Google Scholar 

  3. Stejskal J, Sapurina I. Polyaniline: thin films and colloidal dispersions. Pure Appl Chem. 2005;77:815–26.

    Article  CAS  Google Scholar 

  4. Rather MS, Majid K, Wanchoo RK, Singla ML. Synthesis, characterization, and thermal study of polyaniline composite with the photoadduct of potassium hexacyanoferrate (II) involving hexamine ligand. J Therm Anal Calorim. 2013;112:893–900.

    Article  CAS  Google Scholar 

  5. Kepinski L, Wolcyrz M, Marchewka M. Structure evolution of nanocrystalline CeO2 supported on silica: effect of temperature and atmosphere. J Solid State Chem. 2002;168:110–8.

    Article  CAS  Google Scholar 

  6. Trovarelli A, Boaro M, Rocchini E, Leitenburg C, Dolcetti G. Some recent developments in the characterization of Ceria—based catalysts. J Alloy Compd. 2001;323–324:584–91.

    Article  Google Scholar 

  7. Tago T, Tashiro S, Hashimoto Y, Wakabayashi K, Kishida M. Synthesis and optical properties of SiO2-coated CeO2 nanoparticles. J Nanopart Res. 2003;5:55–60.

    Article  CAS  Google Scholar 

  8. Wang SX, Huang ZH, Wang JH, Li YS, Tan ZC. Thermal stability of several polyaniline/rare earth oxide composites (I): polyaniline/CeO2 composites. J Therm Anal Calorim. 2012;107:1199–203.

    Article  CAS  Google Scholar 

  9. Wang SX, Li Y, Huang ZH, Li H. Synthesis and characteristic of polyaniline/Dy2O3 composites: thermal property and electrochemical performance. J Environ Sci. 2013;25:S36–40.

    Article  Google Scholar 

  10. Huang ZH, Wang SX, Li H, et al. Thermal stability of several polyaniline/rare earth oxide composites III. J Thermal Anal Calorim. 2013;113:667–71.

    Article  CAS  Google Scholar 

  11. Li H, Wang SX, Huang ZH, et al. Thermal stability and electrochemical performance of polyaniline/Pr6O11 composites. Polym Adv Technol. 2014;1:66–72.

    Article  Google Scholar 

  12. Huang ZH, Wang SX, Li H, et al. Thermal stability of several polyaniline/rare earth oxide composites. J Therm Anal Calorim. 2014;115:259–66.

    Article  CAS  Google Scholar 

  13. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1963;6:183–95.

    Google Scholar 

  14. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–2.

    Article  CAS  Google Scholar 

  15. Dimier F, Sbirrazzuoli N, Vergnes B, Vincent M. Curing kinetics and chemorheological analysis of polyurethane formation. Polym Eng Sci. 2004;44:518–27.

    Article  CAS  Google Scholar 

  16. Sbirrazzuoli N, Girault Y, Elégant L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3-Peak maximum evolution methods and isoconversional methods. Thermochim Acta. 1997;293:25–37.

    Article  CAS  Google Scholar 

  17. Budrugeac P, Homentcovschi D, Segal E. Critical analysis of the isoconversional methods for evaluating the activation energy. I. Theoretical background. J Therm Anal Calorim. 2000;63:457–63.

    Article  Google Scholar 

  18. Liu J, Zhang FX, Ren YW, Hun YQ, Nan YF. Thermal kinetic TG-analysis of metal oxalate complexes. Thermochim Acta. 2003;406:77–87.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China under the Grant No. 20903017, the Program for Liaoning Excellent Talents in University (No. LJQ2013051) and the Science and Technology Foundation of Dalian under the Grant No. 2010J21DW010 for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, S., Huang, Z. et al. A kinetic analysis of thermal decomposition of polyaniline and its composites with rare earth oxides. J Therm Anal Calorim 119, 1853–1860 (2015). https://doi.org/10.1007/s10973-014-4309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4309-y

Keywords

Navigation