Skip to main content
Log in

Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, ferrous powder has been used as flame retardant and smoke suppression synergism with ammonium polyphosphate (APP) in flame retardant thermoplastic polyurethane (TPU) composites. The synergistic flame retardant and smoke suppression effects between ferrous powder and APP have been studied using cone calorimeter test (CCT), smoke density test (SDT), and limiting oxygen index (LOI). The CCT results showed that appropriate amount of ferrous powder can greatly decrease heat release rate, total heat release, mass loss, smoke production rate, total smoke release, and smoke factor. The SDT results indicated that ferrous powder can greatly improve the luminous flux of flame retardant TPU composites in the test with flame; however, the luminous flux decreases with the addition of ferrous powder in the test without flame. And the LOI results showed that the LOI value of the samples with ferrous powder is higher than that of the sample with only APP. The above results imply there are synergistic flame retardant and smoke suppression effects between ferrous powder and APP in TPU composites. Then, the thermo-gravimetric (TG) and scanning electron microscopy (SEM) were used to investigate the synergistic flame retardant and smoke suppression mechanism between ferrous powder and APP in TPU composites. The TG and DTG results showed that ferrous powder can decrease the initial decomposition temperature and improve the thermal stability at high temperature for flame retardant TPU composites. The SEM results showed that ferrous powder can improve the quality of char residues after CCT, resulting good flame retardant and smoke suppression properties for TPU composites containing both APP and ferrous powder. This is a very meaningful result in fire safety materials fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nie SB, Peng C, Yuan SJ, Zhang MX. Thermal and flame retardant properties of novel intumescent flame retardant polypropylene composites. J Therm Anal Calorim. 2013;113:865–71.

    Article  CAS  Google Scholar 

  2. Hatsuhiko H, Yoshihisa T, Takahito I. Synergistic effect of red phosphorus, novella and melamine ternary combination on flame retardancy of poly (oxymethylene). Polym Degrad Stab. 2006;91:1996–2002.

    Article  Google Scholar 

  3. Kongkhlang T, Kousaka Y, Umemura T, Nakaya D, Thuamthong W, Pattamamongkolchai Y, Chirachanchai S. Role of primary amine in polyoxymethylene (POM)/bentonite nanocomposite formation. Polymer. 2008;49:1676–84.

    Article  CAS  Google Scholar 

  4. Archodoulaki VM, Lüftl S, Seidler S. Degradation behavior of polyoxymethylene: Influence of different stabilizer packages. J Appl Polym Sci. 2007;105:3679–88.

    Article  CAS  Google Scholar 

  5. Zhang Q, Chen YH. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene. J Polym Res. 2011;18:293–303.

    Article  CAS  Google Scholar 

  6. Carty P, White S. Relationship between char, flammability and smoke production in blends of chlorinated polyvinyl chloride, CPVC, and acrylonitrile–butadiene–styrene, ABS, containing a smoke suppressing iron compound. Polym Netw Blends. 1997;7:121–4.

    CAS  Google Scholar 

  7. Carty P, Whilte S. Anomalous flammability behavior of CPVC (chlorinated polyvinyl chloride) in blends with ABS (acrylonitrile–butadiene–styrene) containing flame-retarding/smoke-suppressing compounds. Polymer. 1997;38:1111–9.

    Article  CAS  Google Scholar 

  8. Carty P, Metcalfe E, Annison WN. The optimization of the smoke suppressant and flame retardant properties of flexible PVC. J Appl Polym Sci. 1990;41:901–6.

    Article  CAS  Google Scholar 

  9. Skinner GA, Haines P, Evans SJ. The effects of structure on the thermal degradation of polyester resins. Thermochim Acta. 1996;278:77–89.

    Article  Google Scholar 

  10. Morgan AB, Gilman JW. An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 2013;37:259–79.

    Article  CAS  Google Scholar 

  11. Green DW, Dallavia AJ. Alumina trihydrate in flexible PVC-effects of alumina particle morphology. J Vinyl Addit Technol. 1988;10:178–82.

    Article  CAS  Google Scholar 

  12. Gann RG, Babrauskas V, Peacock RD, Hall JR. Fire conditions for smoke toxicity measurement. Fire Mater. 1994;18:193–9.

    Article  CAS  Google Scholar 

  13. Prager FH, Cabos HP. Fire–gas hazards in rail traffic. Fire Mater. 1994;18:131–49.

    Article  CAS  Google Scholar 

  14. Chen XL, Jiang YF, Jiao CM. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    Article  CAS  Google Scholar 

  15. Fang Y, Wang Q, Guo C, Song Y, Cooper PA. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites. J Therm Anal Calorim. 2013;100:230–6.

    CAS  Google Scholar 

  16. Wang X, Hu Y, Song L, Xuan SY, Xing WY, Bai ZM, Lu HD. Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch biocomposites. Ind Eng Chem Res. 2010;50:713–20.

    Article  Google Scholar 

  17. Wu K, Hu Y, Song L, Lu HD, Wang ZZ. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res. 2009;48:3150–7.

    Article  CAS  Google Scholar 

  18. Chen XL, Jiao CM, Wang Y. Synergistic effects of iron powder on intumescent flame retardant polypropylene system. Express Polym Lett. 2009;3:359–65.

    Article  CAS  Google Scholar 

  19. Tsai KC. Orientation effect on cone calorimeter test results to assess fire hazard of materials. J Hazard Mater. 2009;172:763–72.

    Article  CAS  Google Scholar 

  20. Schartel B, Hull TR. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  21. Wang XY, Li Y, Liao WW, Gu J, Li D. A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol. 2008;19:1055–61.

    Article  CAS  Google Scholar 

  22. Qian Y, Wei P, Zhao XM, Jiang PK, Yu HZ. Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire Mater. 2012;22:22037–43.

    Google Scholar 

  23. Chen XL, Jiao CM. Flammability and thermal degradation of epoxy acrylate modified with phosphorus-containing compounds. Polym Adv Technol. 2010;21:490–5.

    CAS  Google Scholar 

  24. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.

    Article  CAS  Google Scholar 

  25. Almeras X, Bras ML, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab. 2003;82:325–31.

    Article  CAS  Google Scholar 

  26. Jiao CM, Chen XL. Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci. 2010;10:767–72.

    Article  Google Scholar 

  27. Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mater. 2012;209:34–9.

    Article  Google Scholar 

  28. Carty P, White S, Creghton JR. TG and flammability studies on polymer blends containing acrylonitrile–butadiene–styrene and chlorinated poly(vinyl chloride). J Therm Anal Calorim. 2001;63:679–87.

    Article  CAS  Google Scholar 

  29. Carty P, White S. The effect of temperature on char formation in polymer blends: an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends. Polym Degrad Stab. 2002;75:173–84.

    Article  CAS  Google Scholar 

  30. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.

    Article  CAS  Google Scholar 

  31. Chen XL, Jiao CM, Zhang J. Thermal and combustion behavior of ethylene–vinyl acetate/aluminum trihydroxide/Fe-montmorillonite composites. Polym Eng Sci. 2012;10:414–9.

    Article  Google Scholar 

  32. Chen XL, Hu Y, Jiao CM, Song L. Preparation and thermal properties of a novel flame-retardant coating. Polym Degrad Stab. 2007;92:1141–50.

    Article  CAS  Google Scholar 

  33. Kimura T. Advanced topics of 15th international congress of thermal analysis and calorimetry. J Therm Anal Calorim. 2013;113:999–1002.

    Article  CAS  Google Scholar 

  34. Li LL, Wang G, Wang SY, Qin S. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim. 2013;114:1183–9.

    Article  CAS  Google Scholar 

  35. Kubranová M, Jóna E, Rudinská E, Nemčeková K, Ondrušová D, Pajtášová M. Thermal properties of Co-, Ni- and Cu-exchanged montmorillonite with 3 hydroxypyridine. J Therm Anal Calorim. 2003;74:251–7.

    Article  Google Scholar 

  36. Jona E, Sapietova M, Nircova S, Pajtasova M, Ondrusova D, Pavlık V, Lajdova L, Mojumdar SC. Characterization and thermal properties of Ni-exchanged montmorillonite with benzimidazole. J Therm Anal Calorim. 2008;94:69–73.

    Article  CAS  Google Scholar 

  37. Zhao K, Xu W, Song L, Wang B, Feng H, Hu Y. Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol. 2012;23:894–900.

    Article  CAS  Google Scholar 

  38. Lin M, Li B, Li Q, Li S, Zhang SQ. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci. 2011;121:1951–60.

    Article  CAS  Google Scholar 

  39. Zhang Y, Chen X, Fang Z. Synergistic effects of expandable graphite and ammonium polyphosphate with a new carbon source derived from biomass in flame retardant ABS. J Appl Polym Sci. 2013;128:2424–32.

    Article  CAS  Google Scholar 

  40. Fang G, Li H, Chen Z, Liu X. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. J Hazard Mater. 2010;181:1004–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51106078, 51206084), the Out-standing Young Scientist Research Award Fund from Shandong Province (BS2011CL018), and the University Research and Development Projects Shandong Province (J14LA13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Zhao, X., Song, W. et al. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim 120, 1173–1181 (2015). https://doi.org/10.1007/s10973-014-4377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4377-z

Keywords

Navigation