Skip to main content
Log in

Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel biodegradable poly(butylene succinate) (PBS) copolyesters containing phosphors flame-retardant groups were synthesized by melt-polycondensation from succinic acid and 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phosphaphenanthrene-10-oxide (DDP) with 1,4-butanediol. In order to analyze the effects of the third monomer (DDP) on the relative properties of PBS, the composition, crystal structure, crystallization behavior, multiple melting behavior, and spherulitic morphology of the copolyesters were investigated by 1H-NMR, WAXD, DSC, and POM, respectively. WAXD data revealed that the crystal structure of PBS was not affected by DDP. The overall crystallization kinetic showed that the crystallization of PBS was retarded with the introduction of DDP, especially when the DDP content exceeds 7.5 mol%, which may result from the stereo-hindrance of DDP unit. Furthermore, crystallization temperature (T c), crystallization enthalpy (ΔH c), melting temperature (T m), and crystallinity (X c) of PBS copolyesters also decreased apparently with the increase in DDP contents. Also, the equilibrium melting temperature (T om ) obtained from Hoffman-Weeks analysis decreased, indicating that the regularity of PBS chain segments was reduced probably due to the diluent effect of the specific chain structure of DDP. All spherulites showed the ring-banded extinction patterns, which implied that phosphorus-containing (DDP) segment did not change the growth mechanism of PBS crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han HY, Wang XD, Wu DZ. Mechanical properties, morphology and crystallization kinetic studies of bio-based thermoplastic composites of poly(butylene succinate) with recycled carbon fiber. J Chem Technol Biotechnol. 2013;88:1200–11.

    Article  CAS  Google Scholar 

  2. Miyata T, Masuko T. Crystallization behaviour of poly(tetramethylene succinate). Polymer. 1998;39:1399–404.

    Article  CAS  Google Scholar 

  3. Wei ZY, Chen GY, Shi YM, Song P, Zhan MQ, Zhang WX. Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. J Polym Res. 2012;19:9930–40.

    Article  Google Scholar 

  4. Soccio M, Lotti N, Munari A. Influence of block length on crystallization kinetics and melting behavior of poly(butylene/thiodiethylene succinate)block copolymers. J Therm Anal Calorim. 2013;114:677–88.

    Article  CAS  Google Scholar 

  5. Chen L, Wang YZ. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol. 2010;21:1–26.

    Article  Google Scholar 

  6. Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int. 2005;54:11–35.

    Article  CAS  Google Scholar 

  7. Zhang C, Huang JY, Liu SM, Zhao JQ. The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus-containing diacid. Polym Adv Technol. 2011;22:1768–77.

    Article  CAS  Google Scholar 

  8. Chang SJ, Chang FC. Synthesis and characterization of copolyesters containing the phosphorus linking pendent groups. J Appl Polym Sci. 1999;72:109.

    Article  CAS  Google Scholar 

  9. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  10. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): flame retardancy performance and mechanisms. Polym Degrad Stab. 2011;96:875–84.

    Article  CAS  Google Scholar 

  11. Chang SJ, Sheen YC, Chang RS, Chang FC. The thermal degradation of phosphorus-containing copolymers. Polym Degrad Stab. 1996;54:365–71.

    Article  CAS  Google Scholar 

  12. Wang DY, Song YP, Lin L, Wang XL, Wang YZ. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer. 2011;52:233–8.

    Article  CAS  Google Scholar 

  13. Sablong R, Duchateau R, Koning CE, Pospiech D, Korwitz A, Komber H, Starke S, Häußler L, Jehnichen D, Landwehr MA. Incorporation of a flame retardancy enhancing phosphorus-containing diol into poly(butylene terephthalate) via solid state polycondensation: a comparative study. Polym Degrad Stab. 2011;96:334–41.

    Article  CAS  Google Scholar 

  14. Li J, Zhu HF, Li J, Fan XY, Tian XY. Thermal degradation behaviors of phosphorus-silicon synergistic flame-retardant copolyester. J Appl Polym Sci. 2011;122:1993–2003.

    Article  CAS  Google Scholar 

  15. Chang SJ, Chang FC. Sequential distribution of copolyesters containing the phosphorus linking pendant groups characterized by 1H-n.m.r. Polymer. 1998;39:3233–40.

    Article  CAS  Google Scholar 

  16. Chang SJ, Chang FC. Characterizations for blends of phosphorus-containing copolyester with poly(ethylene terephthalate). Polym Eng Sci. 1998;38:1471–81.

    Article  CAS  Google Scholar 

  17. Wang DY, Wei LL, Ge XG, Yang KK, Wang XL, Wang YZ. Nonisothermal crystallization behaviors of flame-retardant copolyester/montmorillonite nanocomposites. J Macromol Sci Phys. 2009;48:927–40.

    Article  CAS  Google Scholar 

  18. Chen HB, Zhang Y, Chen L, Shao ZB, Liu Y, Wang YZ. Novel inherently flame-retardant poly(trimethylene terephthalate) copolymer with the phosphorus-containing linking pendent group. Ind Eng Chem Res. 2010;49:7052–9.

    Article  CAS  Google Scholar 

  19. Chen HB, Zeng JB, Dong X, Chen L, Wang YZ. Block phosphorus-containing poly(trimethylene terephthalate) copolymer via solid-state polymerization: retarded crystallization and melting behaviour. Cryst Eng Comm. 2013;15:2688–98.

    Article  CAS  Google Scholar 

  20. Jin TX, Zhou M, Hu SD, Chen F, Fu Q. Effect of molecular weight on the properties of poly(butylene succinate). Chin J Polym Sci. 2014;32:953–60.

    Article  CAS  Google Scholar 

  21. Tan LC, Chen YW, Zhou WH, Ye SW. crystallization behavior and mechanical strength of poly(butylene succinate-co-ethylene glycol) based nanocomposites using functionalized multiwalled carbon nanotubes. Polym Eng Sci. 2012;52:2506–17.

    Article  CAS  Google Scholar 

  22. Tan LC, Chen YW, Zhou WH, Nie HR, Li F, He XH. Novel poly(butylene succinate-co-lactic acid) copolymers: synthesis, crystallization, and enzymatic degradation. Polym Degrad Stab. 2010;95:1920–7.

    Article  CAS  Google Scholar 

  23. Park JW, Kim DK, Im SS. Crystallization behaviour of poly(butylene succinate) copolymers. Polym Int. 2002;51:239–44.

    Article  CAS  Google Scholar 

  24. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer. 2005;46:12081–92.

    Article  CAS  Google Scholar 

  25. Yang Y, Qiu ZB. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. Cryst Eng Comm. 2011;13:2408–17.

    Article  CAS  Google Scholar 

  26. Wang GY, Qiu ZB. Synthesis, crystallization kinetics and morphology of novel biodegradable poly(butylene succinate-co-hexamethylene succinate) copolyesters. Ind Eng Chem Res. 2012;51:16369–76.

    Article  CAS  Google Scholar 

  27. Liu XQ, Li CC, Zhang D, Xiao YN. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolymer modified with rosin maleopimaric acid anhydride. J Polym Sci B Polym Phys. 2006;44:900–13.

    Article  CAS  Google Scholar 

  28. Papageorgiou GZ, Achilias DS, Bikiaris DN. Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys. 2007;208:1250–64.

    Article  CAS  Google Scholar 

  29. Yasuniwa M, Tsubakihara S, Satou T, Iura K. Multiple melting behavior of poly(butylene succinate). II thermal analysis of isothermal crystallization and melting process. J Polym Sci B Polym Phys. 2005;43:2039–47.

    Article  CAS  Google Scholar 

  30. Xu YX, Xu J, Guo BH, Xie XM. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci B Polym Phys. 2007;45:420–8.

    Article  CAS  Google Scholar 

  31. Wei ZY, Song P, Zhou C, Chen GY, Chang Y, Li JF, Zhang WX, Liang JC. Insight into the annealing peak and microstructural changes of poly(L-lactic acid) by annealing at elevated temperatures. Polymer. 2013;54:3377–84.

    Article  CAS  Google Scholar 

  32. Zhang J, Li FX, Yu JY. Multiple melting behavior of biodegradable poly(butylene succinate-co-terephthalate) (PBST) copolymer. J Therm Anal Calorim. 2013;111:711–5.

    Article  CAS  Google Scholar 

  33. Qiu ZB, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44:7781–5.

    Article  CAS  Google Scholar 

  34. Gan ZH, Abe H, Kurokawa H, Doi Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate)(pbs) and its copolymers. Biomacromolecules. 2001;2:605–13.

    Article  CAS  Google Scholar 

  35. Gan ZH, Abe H, Doi Y. Crystallization melting and enzymatic degradation of biodegradable poly(butylene succinate-co-14 mol% ethylene succinate) copolyester. Biomacromolecules. 2001;2:313–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for financial support (Nos. 31000427, 21034001, 21174021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wei, Z., Yu, Y. et al. Synthesis and crystallization behavior of novel poly(butylene succinate) copolyesters containing phosphorus pendent groups. J Therm Anal Calorim 120, 1799–1810 (2015). https://doi.org/10.1007/s10973-015-4511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4511-6

Keywords

Navigation