Skip to main content
Log in

The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To improve both the mechanical properties and flame-retardant performance of flame-retardant natural rubber composite, double-shell co-microencapsulated ammonium polyphosphate and expandable graphite (EG) (M(A&E)) were prepared by using melamine–formaldehyde resin and organic silicon in situ polymerization. The structure of the microcapsules was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Due to the presence of synergists EG and organic silicone shell, the NR/M(A&E) composites had much better flame-retardant and mechanical properties than other flame-retardant NR composites. The limited oxygen index value of the NR/M(A&E) composite reached the maximum, and the UL-94 ratings were increased to V-0; in addition, the cone calorimetry indicates that the NR/M(A&E) composite has best flame-retardant properties and the lowest fire risk. Furthermore, the improvement in mechanical properties and flame-retardant behavior of M(A&E) particles filled NR were attributed to the desirable dispersion by the RPA. The occurrence of a synergistic effect between EG and intumescent flame-retardant in the NR composites was proved. As a result, the thermal stability and flame retardancy of NR were enhanced compared to the NR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen BS, Gao WL, Shen JB, Guo SY. The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene. Compos Sci Technol. 2014;93:54–60.

    Article  CAS  Google Scholar 

  2. Janowska G, Kucharska-Jastrząbek A, Rybiński P, Wesołek D, Wójcik I. Flammability of diene rubbers. J Therm Anal Calorim. 2010;102:1043–9.

    Article  CAS  Google Scholar 

  3. Wang BB, Wang XF, Tang G, Shi YQ, Hu WZ, Lu HD, Song L, Hu Y. Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene–vinyl acetate copolymer cable. Compos Sci Technol. 2012;72:1042–8.

    Article  CAS  Google Scholar 

  4. Li B, Sun CY, Zhang XC. An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter. Chem J Chin Univ. 1999;20:146–9.

    CAS  Google Scholar 

  5. Almeras X, Dabrowski F. Using polyamide 6 as charring agent in intumescent polypropylene formulations II. Polym Degrad Stab. 2002;77:315–23.

    Article  CAS  Google Scholar 

  6. Chen X, Jiao C, Jiao J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104:1037–43.

    Article  CAS  Google Scholar 

  7. Wu K, Wu ZZ, Hu Y. Microencapsulated ammonium polyphosphate with urea–melamine–formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1118–25.

    Article  CAS  Google Scholar 

  8. Wang N, Wu YH, Mi L, Zhang J, Li XR, Fang QH. The influence of silicone shell on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2014;118:349–57.

    Article  CAS  Google Scholar 

  9. Bai G, Guo C, Li L. Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Constr Build Mater. 2014;50:148–53.

    Article  Google Scholar 

  10. Duquesne S, Duquesne LM, Bourbigot S, Delobel R, Vezin H, Camino G, Eling B, Lindsay C, Roels T. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 2003;27:103–17.

    Article  CAS  Google Scholar 

  11. Camino S, Camino R, Bras ML, Camino G. A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane. Polym Degrad Stab. 2002;77:333–44.

    Article  Google Scholar 

  12. Ye L, Ding P, Zhang M, Qu BJ. Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocomposites. J Appl Polym Sci. 2008;107:3694–701.

    Article  CAS  Google Scholar 

  13. Xie RC, Qu BJ. Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect. J Appl Polym Sci. 2001;80:1181–9.

    Article  CAS  Google Scholar 

  14. Duquesne S, Bras LM, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym Degrad Stab. 2001;74:493–9.

    Article  CAS  Google Scholar 

  15. Wu XF, Wang LC, Wu C, Yu JH, Wang GL. Influence of char residues on flammability of EVA/EG, EVA/NG and EVA/GO composites. Polym Degrad Stab. 2012;97:54–63.

    Article  CAS  Google Scholar 

  16. Meng XY, Ye L, Zhang XG, Tang PM, Tang JH, Ji X, Li ZM. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foam. J Appl Polym Sci. 2009;114:853.

    Article  CAS  Google Scholar 

  17. Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Advan Technol. 2008;19:1118–25.

    Article  CAS  Google Scholar 

  18. Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J. 2010;163:154–9.

    Article  CAS  Google Scholar 

  19. Wang N, Mi L, Wu YX, Wang XZ, Fang QH. Enhanced flame retardancy of natural rubber composite with addition of microencapsulated ammonium polyphosphate and MCM-41 fillers. Fire Saf J. 2013;62:281–8.

    Article  CAS  Google Scholar 

  20. Ye L, Meng XY, Liu XM, Tang JH, Li ZM. Flame-retardant and mechanical properties of high-density rigid polyurethane foams (RPUF) filled with deca-brominated diphenyl ethane (DBDPE) and expandable graphite (EG). J Appl Polym Sci. 2009;111:2372–80.

    Article  CAS  Google Scholar 

  21. Price D, Bullett KJ, Cunliffe LK, Hull TP, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym Degrad Stab. 2007;92:1101–14.

    Article  CAS  Google Scholar 

  22. Wang DY, Liu Y, Wang YZ, Artiles CP, Hull TR, Price D. Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polym Degrad Stab. 2007;92:1592–8.

    Article  CAS  Google Scholar 

  23. Lv P, Wang Z, Hu K, Fan W. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym Degrad Stab. 2005;90:523–34.

    Article  CAS  Google Scholar 

  24. Wang BB, Wang XF, Shi YQ, Tang G, Tang QB, Song L, Hu Y. Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer. Radiat Phys Chem. 2012;81:308–15.

    Article  CAS  Google Scholar 

  25. Nie SB, Hu Y, Song L, He QL, Yang DD. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym Adv Technol. 2008;19:1077–83.

    Article  CAS  Google Scholar 

  26. Qian Y, Wei P, Jiang P, Zhao X, Yu H. Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR. Polym Degrad Stab. 2011;96:1134–40.

    Article  CAS  Google Scholar 

  27. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polym Degrad Stab. 2002;77:195.

    Article  CAS  Google Scholar 

  28. Xuan Z, Yi Z, Mao ZP. The flame retardancy and thermal stability properties of poly (ethylene terephthalate)/hexakis (4-nitrophen oxy) cyclotriphosphazene systems. Polym Degrad Stab. 2012;97:1504–10.

    Article  Google Scholar 

  29. Robertson CG, Lin CJ, Bogoslovov RB, Rackaitis M, Sadhukhan P, Quinn JD, Roland CM. Reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber. Rubber Chem Technol. 2011;84:507–19.

    Article  CAS  Google Scholar 

  30. Lee BL. Reinforcement of uncured and cured rubber composites and its relationship to dispersive mixing – interpretation of cure meter rheographs of carbon-black loaded SBR and cis-poly-butadiene compounds. Rubber Chem Technol. 1979;52:1019–29.

    Article  CAS  Google Scholar 

  31. Wolf S. Chemical aspects of rubber reinforcement by fillers. Rubber Chem Technol. 1996;69:325–46.

    Article  Google Scholar 

  32. Kraus G. Reinforcement of elastomers by carbon black. Rubber Chem Technol. 1978;51:297–321.

    Article  Google Scholar 

  33. Wolf S, Wang MJ. Filler–elastomer interactions. Part IV the effect of the surface energies of fillers on elastomer reinforcement. Rubber Chem Technol. 1992;65:329–42.

    Article  Google Scholar 

  34. Balachandran NA, Kurian P, Joseph R. Effect of aluminium hydroxide, chlorinated polyethylene, decabromo biphenyl oxide and expanded graphite on thermal, mechanical and sorption properties of oil-extended ethylene–propylene–diene terpolymer rubber. Mater Des. 2012;40:80–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No: 51103086, 51573098 and 51173110), International Cooperation Program of Science and Technology Bureau of Shenyang, China (Grant No: F15-200-6-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Xu, G., Wu, Y. et al. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 123, 1239–1251 (2016). https://doi.org/10.1007/s10973-015-5011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5011-4

Keywords

Navigation