Skip to main content
Log in

Thermodynamic reassessment of the Al–Zr binary system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Based on the data of the literature reports, the Al–Zr binary system has been re-assessed thermodynamically through the CALPHAD (CALculations of PHAse Diagram) approach using Thermo-Calc software. The Redlich–Kister polynomials as well as the exponential temperature dependence model of Kaptay were used to describe the excess Gibbs energy of the liquid phase and the three terminal solid solutions: fcc_A1 (Al), bcc_A2 (βZr), and hcp_A3 (αZr). Additionally, the ten Al–Zr intermetallic compounds were treated as strict stoichiometric compounds. Finally, the comparison between the experimental and the two calculated phase diagrams, as well as the generated thermodynamic parameters, was critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smallman RE, Ngan AHW. Modern physical metallurgy. 8th ed. New York: Butterworth-Heinemann; 2014.

    Google Scholar 

  2. Forbord B, Mathiesen RH, Mårdalen J, Furu T, Lange HI. J Mater Sci Eng. 2008;479A:313–23.

    Article  Google Scholar 

  3. Kaneko S, Murakami K, Sakai T. J Mater Sci Eng. 2009;500A:8–15.

    Article  Google Scholar 

  4. McCullough C. Thermal aging behavior and lifetime modeling for aluminum zirconium alloy used in ACCR. In: 3M Company Technical Information; 2006.

  5. Edris A. High-temperature, low-sag transmission conductors. Palo-Alto: Technical Report EPRI; 2002.

    Google Scholar 

  6. Cadırlı E, Tecer H, Sahin M, Yılmaz E, Kırındı T, Gunduz M. Effect of heat treatments on the microhardness and tensile strength of Al–0.25 wt% Zr alloy. J Alloys Compd. 2015;632:229–37.

    Article  Google Scholar 

  7. Yang F, Peng L, Okazaki K. Microindentation of aluminum. J Metall Mater Trans. 2004;A35:3323–8.

    Article  Google Scholar 

  8. Karakose E, Karaaslan T, Keskin M, Uzun O. Microstructural evolution and microhardness of a melt-spun Al–6Ni–2Cu–1Si (in wt.%) alloy. J Mater Process Technol. 2008;195:58–62.

    Article  CAS  Google Scholar 

  9. Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Metallkd. 2006;97:246–65.

    Article  CAS  Google Scholar 

  10. Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1 Sc, Al–0.1 Zr and Al–0.1 Sc–0.1 Zr (at.%) alloys during isochronal aging. J Acta Mater. 2010;58:5184–95.

    Article  CAS  Google Scholar 

  11. Laik A, Bhanumurthy K, Kale GB. Intermetallics. 2004;12:69–74.

    Article  CAS  Google Scholar 

  12. Janghorban A, Zdziobek AA, Tafin ML, Antion C, Mazingue T, Pisch A. Phase equilibria in the aluminium-rich side of the Al–Zr system. J Therm Anal Calorim. 2013;112:1015–20.

    Article  Google Scholar 

  13. Fink WL, Willey LA. Equilibrium relation in Al–Zr alloys. Met Technol. 1939;1:69–80.

    Google Scholar 

  14. McPherson DJ, Hansen M. The system Zr–Al. Trans ASM. 1954;46:354–74.

    Google Scholar 

  15. Potzschke M, Schubert K. On the construction of some T4-B 3 homologous and quasihomologous systems. II. The Ti-A1, Zr-Al, Hf-A1, Mo-A1 and some ternary systems. Z Metallkd. 1962;53:548–61.

    Google Scholar 

  16. Wilson CG. The crystal structure of ZrAl2. Acta Crystallogr. 1959;12:660–2.

    Article  CAS  Google Scholar 

  17. Wilson CG, Thomas DIC, Spooner FJ. The crystal structure of Zr4Al3. Acta Crystallogr. 1960;13:56–7.

    Article  Google Scholar 

  18. Schuster C, Bauer J, Debuigne J. Investigation of phase equilibria related to fusion materials: I. The ternary system Zr-Al-Nn. J Nucl Mater. 1983;116:131–5.

    Article  CAS  Google Scholar 

  19. Kematick RJ. High temperature thermodynamics of the zirconium–aluminum system. Ph.D. Thesis. Iowa State University IS-T-1148 DE85 009230; 1985.

  20. Edshammar LE. J Acta Chem Scand. 1960;20:16.

    Google Scholar 

  21. Schulson EM, Graham DB. The peritectoid formation of ordered Zr3Al. Acta Metal. 1976;24:615–25.

    Article  CAS  Google Scholar 

  22. Schulson EM. Further observations of the peritectoid transformation Zr + Zr2Al → Zr3Al. Metall Trans A. 1980;11:1918–20.

    Article  Google Scholar 

  23. Ohashi T, Ichikawa R. A new metastable phase in rapidly solidified Al–Zr alloys. Metall Trans. 1972;3:2300–2.

    Article  CAS  Google Scholar 

  24. Hu Z, Zhan Y, She J, Du Y, Xu H. Phase equilibria in the Al–Zr–Ce system at 773 K. J Alloys Compd. 2010;491:200–2.

    Article  CAS  Google Scholar 

  25. She J, Zhan Y, Hu Z, Li C, Hu J, Du Y, Xu H. Experimental study of Al–Zr–Y system phase equilibria at 773K. J Alloys Compd. 2010;497:118–20.

    Article  CAS  Google Scholar 

  26. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L. Binary Alloy Phase Diagrams. 2nd ed. Materials Park: ASM International; 1990.

    Google Scholar 

  27. Tiwari SN, Tangri K. J Nucl Mater. 1970;34:92–6.

    Article  CAS  Google Scholar 

  28. Murray J, Peruzzi A, Abriata JP. J Phase Equilib Diffus. 1992;13:277–91.

    Article  CAS  Google Scholar 

  29. Kematick RJ, Franzen HF. J Solid State Chem. 1984;54:226–34.

    Article  CAS  Google Scholar 

  30. Schulson EM, McColl DH, Ling VC. Report AECL-5176, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Canada.

  31. Chiotti P, Woerner PF. Metal hydride reactions: I. Reaction of hydrogen with solutes in liquid metal solvents. J Less Common Met. 1964;7:111–9.

    Article  CAS  Google Scholar 

  32. Glazov VM, Lazarev G, Korolkov N. The solubility of certain transition metals in aluminium. Met Term Obrab Met. 1959;10:48–50.

    Google Scholar 

  33. Drits ME, Kadaner ES, Kuz’mina VL. Solubility of silicon and zirconium in aluminium. Izv Akad Nauk. 1968;1:102–5.

    Google Scholar 

  34. Kuznetsov GM, Barsukov AD, Abas MI. Solubility of Mn, Cr, Ti and Zr in Al in the solid state. Sov Non Ferrous Met Res. 1983;11:47–51.

    Google Scholar 

  35. Peruzzi A. J Nucl Mater. 1992;186:89–99.

    Article  CAS  Google Scholar 

  36. Okamoto H. J Phase Equilibria. 1993;14:548–60.

    Google Scholar 

  37. Dezellus O, Gardiola B, Andrieux J. On the Solubility of Group IV Elements (Ti, Zr, Hf) in Liquid Aluminum below 800 & #xB0;C. J Phase Equilib. 2014;35:120–6.

    Article  CAS  Google Scholar 

  38. Schneider A, Klotz H, Stendel J, Strauss G. On the thermochemistry of alloys. Pure Appl Chem. 1961;2:13–6.

    Article  CAS  Google Scholar 

  39. Klein R, Jacob I, O’Hare PAG, Goldberg RN. J Chem Thermodyn. 1994;26:599–608.

    Article  CAS  Google Scholar 

  40. Meschel SV, Kleppa OJ. J Alloy Compd. 1993;191:111–6.

    Article  CAS  Google Scholar 

  41. Esin YO, Serebrennikov NN, Pletneva ED, Kapustkin VK. Izv Vyssh Ucheb Zaved Chern Metall. 1987;10:1–3.

    Google Scholar 

  42. Kubaschewski O. Zirconium-physico-chemical properties of its compounds and alloys. Vienna: International Atomic Energy Agency; 1976. p. 268.

    Google Scholar 

  43. De Boer FR, Boom R, Mattens WC. M, Miedema AR, Niessen AK. Cohesion in Metals: Transition Metal Alloys. North Holland. Amsterdam; 1988.

    Google Scholar 

  44. Mahdouk K, Gachon JC, Bouirden L. Enthalpies of formation of the Al-Nb intermetallic compounds. J Alloys Compd. 1998;268:118–21.

    Article  CAS  Google Scholar 

  45. Nassik M, Chrifi-Alaoui FZ, Mahdouk K, Gachon JC. Calorimetric study of the aluminium–titanium system. J Alloys Compd. 2003;350:151–4.

    Article  CAS  Google Scholar 

  46. Meschel S, Kleppa O. The standard enthalpies of formation of some 3d transition metal aluminides by high-temperature direct synthesis calorimetry. In: Faulkner JS, Jordan RG, editors. Metallic alloys. Dordrecht: Kluwer; 1994. p. 103–12.

    Google Scholar 

  47. Esin YO, Bobrov NP, Petrushevski MS, Gel’d PV. Akad Nauk SSSR Met. 1974;5:104–9.

    Google Scholar 

  48. V.S. Sudavtsova, G.I. Batalin, V.S. Tutevich, Izv. Akad. Nauk SSSR Met. 1985;5:185–87.

  49. Witusiewicz V, Stolz UK, Arpshofen I, Sommer F. Z Metallkd. 1998;89:704–13.

    CAS  Google Scholar 

  50. Sudavtsova VS, Podoprigora NV. Thermodynamic properties of melts in Al–Ti (Zr, Hf) binary systems. J Powder Metall Met Ceram. 2009;48:1–2.

    Article  Google Scholar 

  51. Batalin GI, Beloborodova EA, Nerubaschenko VV, Galochka VD, Slyuzko LI. Izv Vyssh Ucheb Zaved Tsvetn Metall. 1982;3:74–7.

    Google Scholar 

  52. Saunders N, Rivlin VG. Thermodynamic characterization of Al-Cr, AI-Zr and Al-Cr-Zr alloy systems. Mater Sci Technol. 1986;2:521–7.

    CAS  Google Scholar 

  53. Saunders N. Department of Materials Science and Engineering. University of Surrey: Internal Report INT-MSE-016; 1988.

  54. Wang T, Jin Z, Zhao JC. Thermodynamic assessment of the Al–Zr binary system. J Phase Equilib. 2001;22:544–51.

    Article  CAS  Google Scholar 

  55. Fischer E, Colinet C. An updated thermodynamic modeling of the Al–Zr system. J Phase Equilib. 2015;36:404–13.

    Article  CAS  Google Scholar 

  56. Duan YH, Huang B, Sun Y, Peng MJ, Zhou SG. Stability, elastic properties and electronic structures of the stable Zr-Al intermetallic compounds: a first-principles investigation. J Alloys Compd. 2014;590:50–60.

    Article  CAS  Google Scholar 

  57. Wang J, Shang SL, Wang Y, Mei ZG, Liang YF, Du Y, Liu ZK. First principles calculations of binary Al compounds: enthalpies of formation and elastic properties. J CALPHAD. 2011;35:562–73.

    Article  CAS  Google Scholar 

  58. Alatalo M, Weinert M, Watson RE. Stability of Zr-Al alloys. Phys Rev B. 1998;57:2009–12.

    Article  Google Scholar 

  59. Ghosh G, Asta M. First-principles calculation of structural energetic of Al–TM (TM = Ti, Zr, Hf) intermetallics. J Acta Mater. 2005;53:3225–52.

    Article  CAS  Google Scholar 

  60. Zhang H, Wang S. The structural stabilities of the intermetallics and the solid state phase transformations induced by lattice vibration effects in the Al–Zr system by first principles calculations. J Mater Res. 1998;25:2009–12.

    Google Scholar 

  61. Ghosh G, Walle AV, Asta M. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM = Ti, Zr and Hf) systems: a comparison of cluster expansion and supercell methods. J Acta Mater. 2008;56:3202–21.

    Article  CAS  Google Scholar 

  62. Keeler HH, Mallery JH. Crystal structure and some properties of the compound Al3Zr. J Met. 1955;2:394.

    Google Scholar 

  63. Wilson CG, Spooner EJ. Acta Crystallogr. 1960;13:358–9.

    Article  CAS  Google Scholar 

  64. Wilson CG, Thomas DK, Spooner FJ. Acta Crystallogr. 1960;13:56–7.

    Article  Google Scholar 

  65. Spooner FJ, Wilson CG. The crystal structure of ZrAl. Acta Crystallogr. 1962;15:621–2.

    Article  CAS  Google Scholar 

  66. Brauer G. Crystal structure of intermetallic alloys of aluminium with titanium, zirconium, thorium, niobium and tantalum. Naturwissenschaflen. 1938;26:710.

    Article  CAS  Google Scholar 

  67. Dinsdale AT. J CALPHAD. 1991;15:317–425.

    Article  CAS  Google Scholar 

  68. Redlich O, Kister AT. Ind Eng Chem. 1948;40:345–55.

    Article  Google Scholar 

  69. Kaptay G. J CALPHAD. 2004;28:115–24.

    Article  CAS  Google Scholar 

  70. Andersson JO, Helander T, Hoglund L, Shi P, Sundman B. J CALPHAD. 2002;26(2):273–312.

    Article  CAS  Google Scholar 

  71. Jansson B. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden; 1984.

  72. Sundman B, Jansson B, Andersson JO. The thermo-calc databank system. CALPHAD. 1985;9(2):153–90.

    Article  CAS  Google Scholar 

  73. Arroyave R, Liu ZK. J CALPHAD. 2006;30(1):1–13.

    Article  CAS  Google Scholar 

  74. Harvey JP, Gheribi AE, Chartrand P. Thermodynamic integration based on classical atomistic simulations to determine the Gibbs energy of condensed phases: calculation of the aluminum-zirconium system. Phys Rev B. 2012;86(22):224202.

    Article  Google Scholar 

  75. Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TY. The Al–B–Nb–Ti system III Thermodynamic re-evaluation of the constituent binary system Al–Ti. J Alloys Compd. 2008;465:64–77.

    Article  CAS  Google Scholar 

  76. Wang T, Jin Z, Zhao JC. Thermodynamic assessment of the Al-Hf binary system. J Phase Equilib. 2002;23:416–23.

    Article  CAS  Google Scholar 

  77. He C, Stein F, Palm M. Thermodynamic description of the systems Co-Nb, Al-Nb and Co-Al-Nb. J Alloys Compd. 2015;637:361–75.

    Article  CAS  Google Scholar 

  78. Meschel SV, Kleppa OJ. Standard enthalpies of formation of 5d aluminides by high-temperature direct synthesis calorimetry. J Alloys Compd. 1993;197:75–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rkia Tamim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamim, R., Mahdouk, K. Thermodynamic reassessment of the Al–Zr binary system. J Therm Anal Calorim 131, 1187–1200 (2018). https://doi.org/10.1007/s10973-017-6635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6635-3

Keywords

Navigation