Skip to main content
Log in

Investigation on phase formation of Sr2SnO4 and effect of La-doping on its structural and optical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reaction mechanism for the formation of Sr2SnO4 by solid-state reaction between SrCO3 and SnO2 has been investigated using thermal analysis (TG and DSC) combined with X-ray diffraction (XRD) techniques. It is observed that the formation of single-phase Sr2SnO4 takes place by reaction between SrO and SrSnO3 at temperatures ≥ 900 °C. Based on these studies, a few compositions of the system Sr2−xLaxSnO4 (x = 0.01, 0.02, 0.04, 0.06 and 0.10) have been synthesized by calcination at 1000 °C for 8 h. Rietveld refinement of the XRD data confirmed that all the synthesized samples have tetragonal structure, space group (I4/mmm) and symmetry group D 174h . The crystallite size and induced lattice strain has been calculated using size strain plot (SSP), varies from 30 to 50 nm and from (3.00 to 6.27) × 10−3, respectively. Raman and Fourier transformed infrared (FTIR) spectroscopy techniques have been utilized to ponder local changes in the structure of Sr2SnO4 with La incorporation. The optical properties of the samples have been studied using UV–Vis spectroscopy. The systematic shift in the position of the absorption edge (toward the higher wavelength) indicates the incorporation of La in the lattice of Sr2SnO4. The direct and indirect band gap of the samples calculated through Tauc’s plot. The variation in the value of direct band gap is attributed to changes in the charge compensation mechanism or/reduction in particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Fu WT, Visser D, IJdo DJ. High-resolution neutron powder diffraction study on the structure of Sr2SnO4. J Solid State Chem. 2002;169(2):208–13.

    Article  CAS  Google Scholar 

  2. Skinner SJ. Characterisation of La2NiO4+δ using in situ high-temperature neutron powder diffraction. Solid State Sci. 2003;5(3):419–26.

    Article  CAS  Google Scholar 

  3. Skinner SJ, Kilner JA. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ion. 2000;135(1–4):709–12.

    Article  CAS  Google Scholar 

  4. Gu XK, Nikolla E. Design of Ruddlesden–popper oxides with optimal surface oxygen exchange properties for oxygen reduction and evolution. ACS Catal. 2017;7(9):5912–20.

    Article  CAS  Google Scholar 

  5. Sharma RK, Burriel M, Dessemond L, Bassat JM, Djurado E. Lan+1NinO3n+1 (n = 2 and 3) phases and composites for solid oxide fuel cell cathodes: facile synthesis and electrochemical properties. J Power Sources. 2016;1(325):337–45.

    Article  CAS  Google Scholar 

  6. Aguadero A, Alonso JA, Escudero MJ, Daza L. Evaluation of the La2Ni1−xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes. Solid State Ion. 2008;179(11–12):393–400.

    Article  CAS  Google Scholar 

  7. Khandale AP, Bhoga SS. Effect of Sr doping on structural, electrical and electrochemical properties of Nd2CuO4 for IT-SOFC application. Solid State Ion. 2014;1(262):416–20.

    Article  CAS  Google Scholar 

  8. Chaker H, Roisnel T, Potel M, Hassen RB. Structural and electrical changes in NdSrNiO4−δ by substitute nickel with copper. J Solid State Chem. 2004;177(11):4067–72.

    Article  CAS  Google Scholar 

  9. Zhang G, Dong X, Liu Z, Zhou W, Shao Z, Jin W. Cobalt-site cerium doped SmxSr1−xCoO3−δ oxides as potential cathode materials for solid-oxide fuel cells. J Power Sources. 2010;195(11):3386–93.

    Article  CAS  Google Scholar 

  10. Zhang Z, Greenblatt M, Goodenough JB. Synthesis, structure, and properties of the layered perovskite La3Ni2O7−δ. J Solid State Chem. 1994;108(2):402–9.

    Article  CAS  Google Scholar 

  11. Li CX, Liu S, Zhang Y, Li CJ. Characterization of the microstructure and electrochemical behavior of Sm0.7Sr0.3CoO3−δ cathode deposited by solution precursor plasma spraying. Int J Hydrog Energy. 2012;37(17):13097–102.

    Article  CAS  Google Scholar 

  12. Hou J, Yin X, Fang Y, Huang F, Jiang W. Novel red-emitting perovskite-type phosphor CaLa1−xMgM′O6: xEu3+(M′ = Nb, Ta) for white LED application. Opt Mater. 2012;34(8):1394–7.

    Article  CAS  Google Scholar 

  13. Sommer C, Hartmann P, Pachler P, Hoschopf H, Wenzl FP. White light quality of phosphor converted light-emitting diodes: a phosphor materials perspective of view. J Alloy Compd. 2012;15(520):146–52.

    Article  CAS  Google Scholar 

  14. Stanulis A, Sakirzanovas S, Van Bael M, Kareiva A. Sol-gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates. J Sol–Gel Sci Technol. 2012;64(3):643–52.

    Article  CAS  Google Scholar 

  15. Ropp RC. Luminescence and the solid state. New York: Elsevier; 2013.

    Google Scholar 

  16. Weiss R, Faivre R. Préparation et structure de plombates et stannates alcalino-terreux du type A2BO4. C R Hebd Seances Acad Sci. 1959;248(1):106–8.

    CAS  Google Scholar 

  17. Lei BF, Yue S, Zhang YZ, Liu YL. Condensed matter: electronic structure, electrical, magnetic, and optical properties: luminescence properties of Sr2SnO4: Sm3+ afterglow phosphor. Chin Phys Lett. 2010;27(3):1–4.

    Google Scholar 

  18. Ueda K, Yamashita T, Nakayashiki K, Goto K, Maeda T, Furui K, Ozaki K, Nakachi Y, Nakamura S, Fujisawa M, Miyazaki T. Green, orange, and magenta luminescence in strontium stannates with perovskite-related structures. Jpn J Appl Phys. 2006;45(9R):6981.

    Article  CAS  Google Scholar 

  19. Raj AK, Rao PP, Divya S, Ajuthara TR. Terbium doped Sr2MO4 [M = Sn and Zr] yellow pigments with high infrared reflectance for energy saving applications. Powder Technol. 2017;15(311):52–8.

    Article  CAS  Google Scholar 

  20. He B, Gong C, Wang Z, Jia L, Zhao L. Novel, cobalt-free, and highly active Sr2Fe1.5Mo0.5−xSnxO6−δ cathode materials for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy. 2017;42(15):10308–16.

    Article  CAS  Google Scholar 

  21. Skaudzius R, Katelnikovas A, Enseling D, Kareiva A, Jüstel T. Dependence of the 5D0 → 7F4 transitions of Eu3+ on the local environment in phosphates and garnets. J Lumin. 2014;31(147):290–4.

    Article  CAS  Google Scholar 

  22. Udawatte CP, Kakihana M, Yoshimura M. Low-temperature synthesis of pure SrSnO3 and the (BaxSr1−x)SnO3 solid solution by the polymerized complex method. Solid State Ionics. 2000;128(1):217–26.

    Article  CAS  Google Scholar 

  23. Kamimura S, Yamada H, Xu CN. Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1: Sm3+ (n = 1, 2,∞) with perovskite-related structures. Appl Phys Lett. 2012;101(9):091113.

    Article  CAS  Google Scholar 

  24. Bera J, Rout SK. SrTiO3–SrZrO3 solid solution: phase formation kinetics and mechanism through solid-oxide reaction. Mater Res Bull. 2005;40(7):1187–93.

    Article  CAS  Google Scholar 

  25. Chang C, Mao D, Shen J, Feng C. Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties. J Alloy Compd. 2003;348(1):224–30.

    Article  CAS  Google Scholar 

  26. Kumar U, Ansaree MJ, Verma AK, Upadhyay S, Gupta G. Oxygen vacancy induced electrical conduction and room temperature ferromagnetism in system BaSn1−xNixO3 (0 ⩽ x ⩽ 0.20). Materials Research Express. 2017;4(11):116304.

    Article  CAS  Google Scholar 

  27. Hadjarab B, Bouguelia A, Trari M. Synthesis, physical and photo electrochemical characterization of La-doped SrSnO3. J Phys Chem Solids. 2007;68(8):1491–9.

    Article  CAS  Google Scholar 

  28. Mizoguchi H, Chen P, Boolchand P, Ksenofontov V, Felser C, Barnes PW, Woodward PM. Electrical and optical properties of Sb-doped BaSnO3. Chem Mater. 2013;25(19):3858–66.

    Article  CAS  Google Scholar 

  29. Kumar U, Ansaree MJ, Upadhyay S. Structural and optical characterizations of BaSnO3 nano-powder synthesized by aqueous sol–gel method. Process Appl Ceram. 2017;11(3):177–84.

    Article  CAS  Google Scholar 

  30. Upadhyay S, Parkash O, Kumar D. Synthesis, structure and electrical behaviour of lanthanum-doped barium stannate. J Phys D Appl Phys. 2004;37(10):1483.

    Article  CAS  Google Scholar 

  31. Kumar S, Basu S, Rana B, Barman A, Chatterjee S, Jha SN, Bhattacharyya D, Sahoo NK, Ghosh AK. Structural, optical and magnetic properties of sol–gel derived ZnO: Co diluted magnetic semiconductor nanocrystals: an EXAFS study. J Mater Chem C. 2014;2(3):481–95.

    Article  CAS  Google Scholar 

  32. Venkateswaran U, Strössner K, Syassen K, Burns G, Shafer MW. Pressure dependence of the Raman modes in Sr2TiO4. Solid State Commun. 1987;64(10):1273–7.

    Article  CAS  Google Scholar 

  33. Burns G, Dacol FH, Kliche G, Konig W, Shafer MW. Raman and infrared studies of Sr2TiO4: a material isomorphic to (La, Sr)2CuO4 superconductors. Phys Rev B. 1988;37(7):3381.

    Article  CAS  Google Scholar 

  34. Šepelák V, Becker KD, Bergmann I, Suzuki S, Indris S, Feldhoff A, Heitjans P, Grey CP. A one-step mechanochemical route to core–shell Ca2SnO4 nanoparticles followed by 119Sn MAS NMR and 119Sn Mössbauer spectroscopy. Chem Mater. 2009;21(12):2518–24.

    Article  CAS  Google Scholar 

  35. Shi J, Li J, Zhu Y, Wei F, Zhang X. Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal Chim Acta. 2002;466(1):69–78.

    Article  CAS  Google Scholar 

  36. Zuo J, Xu C, Liu X, Wang C, Wang C, Hu Y, Qian Y. Study of the Raman spectrum of nanometer SnO2. J Appl Phys. 1994;75(3):1835–6.

    Article  CAS  Google Scholar 

  37. Lam DJ, Veal BW, Ellis DE. Electronic structure of lanthanum perovskites with 3 d transition elements. Phys Rev B. 1980;22(12):5730.

    Article  CAS  Google Scholar 

  38. Omeiri S, Rekhila G, Trari M, Bessekhouad Y. Physical and photoelectrochemical characterizations of Ba2SnO4−δ elaborated by chemical route. J Solid State Electrochem. 2015;19(6):1651–8.

    Article  CAS  Google Scholar 

  39. Zhou X, Wang X, Wen J. Optical study of Sr2SnO4: Eu3+ phosphor. Opt Int J Light Electron Opt. 2014;125(14):3454–6.

    Article  CAS  Google Scholar 

  40. Pandya A, Joshi KV, Sutariya PG, Menon SK. Thioctic acid modified gold nanoparticles for highly specific and ultrasensitive detection of lanthanum in soil and water. Anal Methods. 2012;4(10):3102–6.

    Article  CAS  Google Scholar 

  41. Surendar T, Kumar S, Shanker V. Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO3 nanoparticles synthesized via modified sol–gel method. Phys Chem Chem Phys. 2014;16(2):728–35.

    Article  CAS  PubMed  Google Scholar 

  42. Thi VH, Lee BK. Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater Res Bull. 2017;96:171–82.

    Article  CAS  Google Scholar 

  43. Singh P, Parkash O, Kumar D. Scaling of low-temperature conductivity spectra of BaSn1−xNbxO3 (x ≤ 0.100): temperature and compositional-independent conductivity. Phys Rev B. 2011;84(17):174306.

    Article  CAS  Google Scholar 

  44. Ahmed AS, Singla ML, Tabassum S, Naqvi AH, Azam A. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Lumin. 2011;131(1):1–6.

    Article  CAS  Google Scholar 

  45. Singh M, Goyal M, Devlal K. Size and shape effects on the band gap of semiconductor. Mater Sci. 2003;48:521.

    Google Scholar 

  46. Anjum S, Saleem H, Rasheed K, Zia R, Riaz S, Usman A. Role of Ni2+ ions in magnetite nano-particles synthesized by Co-precipitation method. J Supercond Novel Magn. 2017;30(5):1177–86.

    Article  CAS  Google Scholar 

  47. Deepa AS, Vidya S, Manu PC, Solomon S, John A, Thomas JK. Structural and optical characterization of BaSnO3 nanopowder synthesized through a novel combustion technique. J Alloy Compd. 2011;509(5):1830–5.

    Article  CAS  Google Scholar 

  48. Ganguly M, Rout SK, Sinha TP, Sharma SK, Park HY, Ahn CW, Kim IW. Characterization and rietveld refinement of A-site deficient lanthanum doped barium titanate. J Alloy Compd. 2013;5(579):473–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head Department of Physics and Coordinator, Central Instrument Facility Centre (CIFC), IIT(BHU), Varanasi, for providing the experimental facilities required for the characterization of the synthesized samples. One of the authors Mr. Upendra Kumar is thankful to the Ministry of Human Resource and Development (MHRD), Government of India, for financial support in terms of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shail Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Yadav, D., Thakur, A.K. et al. Investigation on phase formation of Sr2SnO4 and effect of La-doping on its structural and optical properties. J Therm Anal Calorim 135, 1987–1999 (2019). https://doi.org/10.1007/s10973-018-7432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7432-3

Keywords

Navigation