Skip to main content
Log in

Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The refrigerant R134a is to be phasing out soon in automobile air conditioning applications due to its high global warming potential of 1430. Hence, it is essential to identify a sustainable alternative refrigerant to phase out R134a in automobile air conditioners. This paper presents the experimental thermodynamic performance of R430A (composed of R152a and R600a, in the ratio of 76:24, by mass) as a drop-in substitute to replace R134a in automobile air conditioners. The experiments were carried out in an automobile air conditioner test setup equipped with a variable frequency drive electrical motor. During experimentation, the ambient temperature and ambient relative humidity were maintained at 35 ± 1 °C and 65 ± 5%, respectively. The compressor speed was varied in the range between 1000 and 3000 rpm. The results showed that the coefficient of performance of an automobile air conditioner working with R430A was found to be 12–20% higher with 6–11% reduced compressor power consumption when compared to R134a. The R430A has 2–6 °C higher compressor discharge temperature when compared to R134a. The physical stability of the lubricant used in the compressor was retained while operating with R430A. The maximum exergy destruction occurs in the compressor (0.28 kW for R134a and 0.24 kW for R430A) followed by evaporator (0.16 kW for R134a and 0.14 kW for R430A), condenser (0.14 for R134a and 0.12 kW for R430A) and expansion valve (0.043 kW for R134a and 0.039 kW for R430A) at a compressor speed of 1000 ± 10 rpm. The exergy destruction of the system operating with R430A was found to be 12–28% lower when compared to R134a systems due to its favorable thermo-physical properties. The total equivalent warming impact of R430A was found to be lower when compared to R134a by about 47.3%, 35% and 32.4% for LPG, petrol and diesel vehicles, respectively. The results confirmed that R430A is a good drop-in substitute to replace R134a in existing automobile air conditioning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

COP:

Coefficient of performance

GWP:

Global warming potential

HC:

Hydrocarbon

HFC:

Hydrofluorocarbon

LPG:

Liquefied petroleum gas

VFD:

Variable frequency drive

A :

Area (m2)

ex:

Specific exergy (kJ kg−1 K−1)

\( \mathop {\text{Ex}}\limits^{ \bullet } \) :

Exergy rate (kJ K−1)

E :

Energy consumption per day (in kW h year−1)

h :

Specific enthalpy (kJ kg−1)

L :

Leakage rate in the system (kg year−1)

\( \mathop m\limits^{ \bullet } \) :

Mass flow rate (kg s−1)

m :

Mass of refrigerant (kg)

N :

Life of the system (years)

n :

Operating time per day

q :

Quantity

R :

Given function

s :

Specific entropy (kJ kg−1K−1)

T :

Temperature (oC)

w r :

Total uncertainty

W :

Work (W)

w 1, w 2, …, w n :

Uncertainty in the independent variables

\( x_{1} \), \( x_{2} \),…, x n :

Independent variables

α :

Refrigerant recycling factor

β :

Carbon-dioxide emission factor (assumed as 0.9)

ρ :

Density (kg m−3)

η :

Efficiency (%)

0:

Dead state

1:

Compressor suction

2:

Compressor discharge

3:

Condenser outlet

4:

Expansion valve outlet

cond:

Condenser

comp:

Compressor

dest,comp:

Destruction in compressor

dest,cond:

Destruction in condenser

dest,exp.val:

Destruction in expansion valve

dest, evap:

Destruction in evaporator

ele:

Electrical

evap:

Evaporator

ex:

Exergetic

f:

Fuel

gen:

Generation

r:

Refrigerant

vol:

Volumetric

References

  1. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants—a review. Int J Greenh Gas Control. 2009;3(1):108–19.

    Article  CAS  Google Scholar 

  2. Mahmoud G. An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning. In: SAE international paper no. 01-0874; 1999.

  3. Cabello R, Sanchez D, Llopis R, Arauzo I, Torrella E. Experimental comparison between R152a and R134a working in a refrigeration facility equipped with a hermetic compressor. Int J Refrig. 2015;60:92–105.

    Article  CAS  Google Scholar 

  4. Mohanraj M, Jayaraj S, Muraleedharan C. Comparative assessment of environment-friendly alternatives to R134a in domestic refrigerators. Energy Effic. 2008;1:189–98.

    Article  Google Scholar 

  5. Maclaine-cross IL. Usage and risk of hydrocarbon refrigerants in motor cars for Australia and the United States. Int J Refrig. 2004;2004(27):339–45.

    Article  CAS  Google Scholar 

  6. Wongwises S, Kamboon A, Orachon B. Experimental investigation of hydrocarbon mixtures to replace HFC134a in an automobile air conditioning system. Energy Convers Manag. 2006;47:1644–59.

    Article  CAS  Google Scholar 

  7. Mohanraj M, Jayaraj S, Muraleedharan C. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int J Therm Sci. 2009;48:1036–42.

    Article  CAS  Google Scholar 

  8. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression based refrigeration, air conditioning and heat pump units. Int J Energy Res. 2011;35(8):647–69.

    Article  CAS  Google Scholar 

  9. Sánchez D, Cabello R, Llopis R, Arauzo I, Torrella E. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrig. 2017;74:269–82.

    Article  CAS  Google Scholar 

  10. Mota-Babiloni A, Navarro-Esbrí J, Barrag A, Moles F, Peris B. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl Therm Eng. 2014;71:259–65.

    Article  CAS  Google Scholar 

  11. Zilio C, Brown JS, Schiochet G, Cavallini A. The refrigerant R1234yf in air conditioning systems. Energy. 2011;36:6110–20.

    Article  CAS  Google Scholar 

  12. Zhao Y, Qi Z, Chen J, Xu B, He B. Experimental analysis of the low-GWP refrigerant R1234yf as a drop-in replacement for R134a in a typical mobile air conditioning system. Proc Inst Mech Eng C J Mech Eng Sci. 2012;226(11):2713–25.

    Article  CAS  Google Scholar 

  13. Lee Y, Jung D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile air applications. Appl Therm Eng. 2012;35:240–2.

    Article  CAS  Google Scholar 

  14. Qi Z. Experimental study on evaporator performance in automobile air conditioning system using HFO1234yf as working fluid. Appl Therm Eng. 2013;53:124–30.

    Article  CAS  Google Scholar 

  15. Cho H, Lee H, Park C. Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf. Appl Therm Eng. 2013;61:563–9.

    Article  CAS  Google Scholar 

  16. Meng Z, Zhang H, Mingjing L, Qin Y, Jinyou Q. Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems. Int J Heat Mass Transf. 2018;116:362–70.

    Article  CAS  Google Scholar 

  17. Zhai Z, Wu J, Hu X, Li L, Guo J, Zhang B, Hu J, Zhang J. A 17-fold increase of trifluoroacetic acid in landscape waters of Beijing, China during the last decade. Chemosphere. 2015;129:110–7.

    Article  CAS  PubMed  Google Scholar 

  18. Park K-J, Jung DS. Performance of alternative refrigerant R430A on domestic water purifiers. Energy Convers Manag. 2009;50:3045–50.

    Article  CAS  Google Scholar 

  19. Mohanraj M. Energy performance assessment of R430A as a possible alternative refrigerant to R134a in domestic refrigerators. Energy Sustain Dev. 2013;17:471–6.

    Article  CAS  Google Scholar 

  20. Mohanraj M. Experimental investigations of R430A as drop—in substitute to R134a in domestic refrigerators. Proc Mech Eng E J Process Mech Eng (Article in Press).

  21. Golzari S, Kasaeian A, Daviran S, Mahian O, Wongwises S, Sahin AZ. Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerant. Int J Refrig. 2017;73:134–43.

    Article  CAS  Google Scholar 

  22. Cho H, Park C. Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds. Appl Therm Eng. 2016;101:30–7.

    Article  CAS  Google Scholar 

  23. Li G, Eisele M, Lee H, Hwang Y, Radermacher R. Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy. 2014;68:819–31.

    Article  CAS  Google Scholar 

  24. Prabakaran R, Mohan Lal D. A novel exergy optimization for a mobile air conditioning system. J Therm Anal Calorim. 2018;132:1241–52.

    Article  CAS  Google Scholar 

  25. Prabakaran R, Lal DM, Prabhakaran A, Kumar JK. Experimental investigations on the performance enhancement using microchannel evaporator with integrated receiver-dryer condenser in an automotive air conditioning system. Heat Transfer Eng 2018; (Article in Press).

  26. Holman JP. Experimental methods for engineers. New Delhi: Tata Mc Graw Hill Publishers; 2007.

    Google Scholar 

  27. Paradeshi L, Mohanraj M, Srinivas M, Jayaraj S. Exergy analysis of direct-expansion solar-assisted heat pumps working with R22 and R433A. J Therm Anal Calorim. 2018 (in press).

  28. Daviran S, Kasaeian A, Golzari S, Mahian O, Nasirivatan S, Wongwises S. A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Appl Therm Eng. 2017;110:1091–100.

    Article  CAS  Google Scholar 

  29. Raveendran PS, Sekhar SJ. Exergy analysis of a domestic refrigerator with brazed heat exchanger as condenser. J Therm Anal Calorim. 2017;127:2439–46.

    Article  CAS  Google Scholar 

  30. Fischer SK. Total equivalent warming impact: a measure of the global warming impact of CFC alternatives in refrigerating equipment. Int J Refrig. 1993;16:423–8.

    Article  CAS  Google Scholar 

  31. Maclaine-cross IL, Leonardi E. Why hydrocarbons save energy. AIRAH J. 1997;51:33–7.

    Google Scholar 

Download references

Acknowledgements

The R430A sample provided by Hans Industrial Corporation is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Andrew Pon Abraham.

Annexure

Annexure

The uncertainty of calculated performance parameters are given by:

Mass flow rate

$$ \mathop {\mathop m\limits^{ \bullet } }\limits^{.}{_{\text{r}}} = \left[ {\left( {\frac{\delta N}{N}} \right)^{2} + \left( {\frac{{\delta T_{1} }}{{T_{1} }}} \right)^{2} + \left( {\frac{{\delta T_{0} }}{{T_{0} }}} \right)^{2} + \left( {\frac{{\delta P_{1} }}{{P_{1} }}} \right)^{2} } \right]^{1/2} $$

Refrigeration effect

$$ {Q}_{\text{evaporator}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{_{\text{r}}} }}{{\dot{m}{_{\text{r}}} }}} \right)^{2} + \left( {\frac{{\delta T_{1} }}{{{\text{T}}_{ 1} }}} \right)^{2} + \left( {\frac{{\delta P_{1} }}{{P_{ 1} }}} \right)^{2} + \left( {\frac{{\delta T_{4} }}{{{\text{T}}_{ 4} }}} \right)^{2} + \left( {\frac{{\delta P_{4} }}{{P_{ 4} }}} \right)^{2} } \right]^{1/2} $$

Compressor power consumption

$$ {W}_{\text{compressor}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{_{\text{r}}} }}{{\mathop m\limits^{ \bullet }{_{\text{r}}} }}} \right)^{2} + \left( {\frac{{\delta T_{1} }}{{T_{ 1} }}} \right)^{2} + \left( {\frac{{\delta P_{1} }}{{P_{ 1} }}} \right)^{2} + \left( {\frac{{\delta T_{2} }}{{T_{ 2} }}} \right)^{2} + \left( {\frac{{\delta P_{2} }}{{P_{ 2} }}} \right)^{2} } \right]^{1/2} $$

Coefficient of performance

$$ \mathop {\text{COP}}\limits = \left[ {\left( {\frac{{\delta Q_{\text{evaporator}} }}{{Q_{\text{evaporator}} }}} \right)^{2} + \left( {\frac{{\delta W_{\text{compressor}} }}{{W_{\text{compressor}} }}} \right)^{2} } \right]^{1/2} $$

Exergy destruction in compressor

$$ \mathop {\text{Ex}}\limits^{\cdot}{_{\text{dest,comp}}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{_{r}} }}{{\mathop m\limits^{ \bullet }{_{r}} }}} \right)^{2} + \left( {\frac{{\delta T_{1} }}{{T_{ 1} }}} \right)^{2} + \left( {\frac{{\delta P_{1} }}{{P_{ 1} }}} \right)^{2} + \left( {\frac{{\delta T_{2} }}{{T_{ 2} }}} \right)^{2} + \left( {\frac{{\delta P_{2} }}{{P_{ 2} }}} \right)^{2} + \left( {\frac{{\delta T_{0} }}{{T_{0} }}} \right)^{2} + \left( {\frac{{\delta W_{\text{compressor}} }}{{W_{\text{compressor}} }}} \right)^{2} } \right]^{1/2} $$

Exergy destruction in condenser

$$ \mathop {\text{Ex}}\limits^{\cdot}{_{\text{dest,cond}}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{{_{\text{r}}}} }}{{\mathop m\limits^{ \bullet }{_{\text{r}}} }}} \right)^{2} + \left( {\frac{{\delta T_{2} }}{{T_{ 2} }}} \right)^{2} + \left( {\frac{{\delta P_{2} }}{{P_{ 2} }}} \right)^{2} + \left( {\frac{{\delta T_{3} }}{{T_{ 3} }}} \right)^{2} + \left( {\frac{{\delta P_{3} }}{{P_{ 3} }}} \right)^{2} + \left( {\frac{{\delta T_{0} }}{{T_{0} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{condenser}} }}{{Q_{\text{condenser}} }}} \right)^{2} } \right]^{1/2} $$

Exergy destruction in an expansion device

$$ \mathop {\text{Ex}}\limits^{\cdot}{_{\text{dest,expansion}}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{_{\text{r}}} }}{{\mathop m\limits^{ \bullet }{_{\text{r}}} }}} \right)^{2} + \left( {\frac{{\delta T_{3} }}{{T_{ 3} }}} \right)^{2} + \left( {\frac{{\delta P_{3} }}{{P_{ 3} }}} \right)^{2} + \left( {\frac{{\delta T_{4} }}{{T_{ 4} }}} \right)^{2} + \left( {\frac{{\delta P_{4} }}{{P_{ 4} }}} \right)^{2} + \left( {\frac{{\delta T_{0} }}{{T_{0} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{expansion}} }}{{Q_{\text{expansion}} }}} \right)^{2} } \right]^{1/2} $$

Exergy destruction in an evaporator

$$ \mathop {\text{Ex}}\limits^{\cdot}{_{\text{dest,evaporator}}} = \left[ {\left( {\frac{{\delta \mathop m\limits^{ \bullet }{_{\text{r}}} }}{{\mathop m\limits^{ \bullet }{_{\text{r}}} }}} \right)^{2} + \left( {\frac{{\delta T_{4} }}{{T_{4} }}} \right)^{2} + \left( {\frac{{\delta P_{4} }}{{P_{4} }}} \right)^{2} + \left( {\frac{{\delta T_{1} }}{{T_{1} }}} \right)^{2} + \left( {\frac{{\delta P_{1} }}{{P_{1} }}} \right)^{2} + \left( {\frac{{\delta T_{0} }}{{T_{0} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{evaporator}} }}{{Q_{\text{evaporator}} }}} \right)^{2} } \right]^{1/2} $$

Exergy destruction in a system

$$ \mathop {\text{Ex}}\limits^{\cdot}{_{\text{dest,system}}} = \left[ {\left( {\frac{{\delta W_{\text{compressor}} }}{{W_{\text{compressor}} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{condenser}} }}{{Q_{\text{condenser}} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{expansion}} }}{{Q_{\text{expansion}} }}} \right)^{2} + \left( {\frac{{\delta Q_{\text{evaporator}} }}{{Q_{\text{evaporator}} }}} \right)^{2} } \right]^{1/2} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrew Pon Abraham, J.D., Mohanraj, M. Thermodynamic performance of automobile air conditioners working with R430A as a drop-in substitute to R134a. J Therm Anal Calorim 136, 2071–2086 (2019). https://doi.org/10.1007/s10973-018-7843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7843-1

Keywords

Navigation