Skip to main content
Log in

Al2O3/TiO2 hybrid nanofluids thermal conductivity

An experimental approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research deals with experimental studies on thermal conductivity variation of Al2O3 and TiO2 hybrid nanofluids with water as the base fluid. In addition, Al2O3 and TiO2 nanofluid mixtures were used for evaluation. The prepared samples were tested for determination of thermal conductivity at room temperature as well as at different temperatures. A comprehensive regression analysis was accomplished to link the experimental data sets with volume fractions for all prepared new fluids, as well as with temperature variation. The experimental results were finally linked to an evaluation of Mo number and heat transfer efficiency for possible solar energy uses. Results indicated that the hybrid nanofluids possess upper thermal conductivity if related to water and can successfully replace it in heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

d :

Diameter (m)

n :

Empirical shape factor

T :

Temperature (K)

R 2 :

Accuracy of the fitted equations (–)

u :

Estimated standard uncertainty (–)

α :

Thermal diffusivity (m2 s−1)

μ :

Dynamic viscosity (kg ms−1)

φ :

Particle volume fraction (–)

HTE:

Heat transfer efficiency

f:

Base fluid

hnf:

Hybrid nanofluid

mass:

Refers to mass

nf:

Nanofluid

p:

Particle

r:

Relative

tot:

Total

vol:

Refers to volume

References

  1. Zyła G, Fal J. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: an experimental studies. Thermochim Acta. 2017;650:106–13.

    Article  CAS  Google Scholar 

  2. Zyła G, Fal J, Estellé P. Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles. Int J Heat Mass Transf. 2017;113:1189–99.

    Article  CAS  Google Scholar 

  3. Maxwell CA. Treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  4. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. I&EC Fundam. 1962;1:187–91.

    Article  CAS  Google Scholar 

  5. Wasp FJ. Solid–liquid slurry pipeline transportation. Berlin: Transactions on Techniques; 1977.

    Google Scholar 

  6. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26:530–46.

    Article  CAS  Google Scholar 

  7. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  8. Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:0843141–8.

    Google Scholar 

  9. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  10. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev. 2007;76:061203.

    Google Scholar 

  11. Avsec J, Oblak M. The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int J Heat Mass Transf. 2007;50:4331–41.

    Article  CAS  Google Scholar 

  12. Sharma KV, Sarma PK, Azmi WH, Mamat R, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microscale Nanoscale Therm Fluid Transp Phenom (Spec Issue Heat Mass Transf Nanofluids). 2012;3(4):1–25.

    CAS  Google Scholar 

  13. Chandrsekar M, Suresh S, Srinivasan R, Chandra Bose A. New analyatical models to investigate thermal conductivity of nanofluids. J Nanosci Nanotechnol. 2009;9:533–8.

    Article  CAS  Google Scholar 

  14. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci. 2009;33(4):706–14.

    Article  CAS  Google Scholar 

  15. Dawood HK, Mohammed HA, Che Sidik NA, Munisamy KM. Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. Int Commun Heat Mass Transf. 2015;66:148–57.

    Article  CAS  Google Scholar 

  16. Mahendran M, Lee GC, Sharma KV, Shahrani A, Bakar RA. Performance of evacuated tube solar collector using water-based titanium oxide nanofluid. J Mech Eng Sci. 2012;3:301–10.

    Article  Google Scholar 

  17. Azmi WH, Sharma KV, Sarma PK, Mamat R, Najafi G. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transf. 2014;59:30–8.

    Article  CAS  Google Scholar 

  18. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  19. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    Article  CAS  Google Scholar 

  20. Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int J Heat Mass Transf. 2018;125:82–103.

    Article  CAS  Google Scholar 

  21. Nabil MF, Azmi WH, Abdul Hamid K, Mamat R, Hagos FY. An experimental study on the thermal conductivity and dynamic viscosity of TiO2–SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf. 2017;86:181–9.

    Article  CAS  Google Scholar 

  22. Akilu S, Baheta AT, Sharma KV. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2–CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    Article  CAS  Google Scholar 

  23. Ghadikolaei SS, Yassari M, Sadeghi H, Hosseinzadeh Kh, Ganji DD. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–38.

    Article  CAS  Google Scholar 

  24. Charab AA, Movahedirad S, Norouzbeigi R. Thermal conductivity of Al2O3 + TiO2/water nanofluid: model development and experimental validation. Appl Therm Eng. 2017;119:42–51.

    Article  CAS  Google Scholar 

  25. Hamid KA, Azmi WH, Nabil MF, Mamat R. Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. Int J Heat Mass Transf. 2018;118:617–27.

    Article  CAS  Google Scholar 

  26. Abdul Hamid K, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52.

    Article  CAS  Google Scholar 

  27. Verma SK, Tiwari AK. Progress of nanofluid application in solar collectors: a review. Energy Convers Manag. 2015;100:324–46.

    Article  CAS  Google Scholar 

  28. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  29. Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    Article  CAS  Google Scholar 

  30. Gupta HK, Agrawal GD, Mathur J. Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Therm Eng. 2015;5:70–8.

    Article  Google Scholar 

  31. Delfani S, Karami M, Behabadi MAA. Performance characteristics of a residential type direct absorption solar collector using MWCNT nanofluid. Renew Energy. 2016;87:754–64.

    Article  CAS  Google Scholar 

  32. Chen M, He Y, Zhu J, Wen D. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Appl Energy. 2016;181:65–74.

    Article  CAS  Google Scholar 

  33. Minea AA, El-Maghlany WM. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew Energy. 2018;120:350–64.

    Article  CAS  Google Scholar 

  34. Table Curve 3D, Jardell Scientific.

  35. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    Article  CAS  Google Scholar 

  36. Prasher D, Song J, Wang P, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:133108.

    Article  CAS  Google Scholar 

  37. Moldoveanu GM, Minea AA, Iacob M, Ibanescu C, Danu M. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim Acta. 2018;659:203–12.

    Article  CAS  Google Scholar 

  38. Mouromtseff IE. Water and forced-air cooling of vacuum tubes. Proc IRE. 1942;30:190–205.

    Article  Google Scholar 

  39. Minea AA, Moldoveanu M. Studies on Al2O3, CuO, and TiO2 water-based nanofluids: a comparative approach in laminar and turbulent flow. J Eng Thermophys. 2017;26:30–291.

    Article  Google Scholar 

  40. Asadi M, Asadi A, Aberoumand S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid. Int J Refrig. 2018;89:83–92.

    Article  CAS  Google Scholar 

  41. Simons RE. Comparing heat transfer rates of liquid coolants using the Mouromtseff number. Electron Cool. 2006;12:12.

    Google Scholar 

  42. Timofeeva EV. Nanofluids for heat transfer—potential and engineering strategies. In: Ahsan, A, editor. Two phase flow, phase change and numerical modeling. Chap 7. Intech Open; 2011. https://doi.org/10.5772/22158.

  43. Xu J, Bandyopadhyay K, Jung D. Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol–water mixture. Int J Heat Mass Transf. 2015;94:262–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that this research was possible with the support of the COST action CA 15119: Nanouptake—Overcoming Barriers to Nanofluids Market Uptake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Adriana Minea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moldoveanu, G.M., Minea, A.A., Huminic, G. et al. Al2O3/TiO2 hybrid nanofluids thermal conductivity. J Therm Anal Calorim 137, 583–592 (2019). https://doi.org/10.1007/s10973-018-7974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7974-4

Keywords

Navigation