Skip to main content
Log in

Direct effect of nanoparticles on the thermal conductivity of CuO-water nanofluid in a phase transition phenomenon using molecular dynamics simulation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of CuO-water nanofluid is examined on an aluminum surface. The dimensions of simulation boxes are 70 × 70 × 30 Å3, 60 × 60 × 30 Å3, and 50 × 50 × 30 Å3, with the corresponding number of atoms of 104,351, 123,958, and 145,980. Thermal conductivities of fluid and nanofluid are calculated using the Green–Kubo formula. Molecular dynamics simulation results confirm the direct effect of nanoparticles on the values of thermal conductivities of fluid and nanofluid. The value of 0.59 Wm−1 K−1 is obtained for the thermal conductivity of water. But adding three CuO nanoparticles into the water increases this value to 0.85 Wm−1 K−1. The same effect is observed on the thermal behavior of nanofluid upon increasing the size of CuO nanoparticles that raises the value of the thermal conductivity of nanofluid to 0.99 Wm−1 K−1. The heat flux is increased by adding the nanoparticles into the base fluid; thereby, the phase transition (evaporation) occurs in fewer time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahangar SB, et al. The effect of adsorbed volatile organic compounds on an ultrathin water film measurement. Appl Sci. 2020;10(17):5981.

    Article  CAS  Google Scholar 

  2. Ahangar SB, et al. Optical properties and swelling of thin film perfluorinated sulfonic-acid ionomer. ECS Trans. 2019;92(8):197.

    Article  CAS  Google Scholar 

  3. Ahangar SB, et al. Development of automated angle-scanning, high-speed surface plasmon resonance imaging and SPRi visualization for the study of dropwise condensation. Exp Fluids. 2020;61(1):12.

    Article  Google Scholar 

  4. Karimi-Maleh H, et al. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep. 2020;10:11699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karimi-Maleh H, et al. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588.

    Article  CAS  Google Scholar 

  6. Karimi-Maleh H, et al. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq. 2020;310:113185.

    Article  CAS  Google Scholar 

  7. Khodadadi H, Toghraie D, Karimipour A. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 2019;342:166–80.

    Article  CAS  Google Scholar 

  8. He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int Commun Heat Mass Transf. 2020;110:104440.

    Article  CAS  Google Scholar 

  9. Varzaneh AA, Toghraie D, Karimipour A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2020;139(1):701–20.

    Article  CAS  Google Scholar 

  10. F Soltani, D Toghraie, A Karimipour, Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions. Powder Technol, 2020

  11. Alipour P, Toghraie D, Karimipour A, Hajian M. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: study the equilibrium. Phys A. 2019;515:13–30.

    Article  Google Scholar 

  12. Alipour P, Toghraie D, Karimipour A, Hajian M. Molecular dynamics simulation of fluid flow passing through a nanochannel: effects of geometric shape of roughnesses. J Mol Liq. 2019;275:192–203.

    Article  CAS  Google Scholar 

  13. Yan SR, Shirani N, Zarringhalam M, Toghraie D, Nguyen Q, Karimipour A. Prediction the boiling flow characteristics in rough and smooth microchannels using of molecular dynamics simulation: investigation the effects of boundary wall temperatures. J Mol Liq. 2020;112937:2020.

    Google Scholar 

  14. Alipour P, Toghraie D, Karimipour A. nvestigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale. Phys A. 2019;524:639–60.

    Article  CAS  Google Scholar 

  15. M Farzinpour, D Toghraie, B Mehmandoust, F Aghadavoudi, A Karimipour, Molecular dynamics study of barrier effects on Ferro-nanofluid flow in the presence of constant and time-dependent external magnetic fields. J Mol Liq 13152, 2020

  16. M Farzinpour, D Toghraie, B Mehmandoust, F Aghadavoudi, A Karimipour, Molecular dynamics simulation of ferronanofluid behavior in a nanochannel in the presence of constant and time-dependent magnetic fields. J Therm Anal Calorim 1–9, 2020

  17. Schlick T. Pursuing laplace’s vision on modern computers. Math Appl Biomol Struct Dyn IMA Vol Math Appl. 1996;82:218–47.

    Google Scholar 

  18. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  19. Minkowycz W, et al. Nanoparticle heat transfer and fluid flow. CRC Press: Taylor & Francis; 2013.

    Google Scholar 

  20. Das, Sarit K et al., Nanofluids: Science and Technology, 397, 2007

  21. Mecke M, et al. Molecular dynamics simulation of the liquid–vapor interface: the Lennard–Jones fluid. J Chem Phys. 1997;107(21):9264.

    Article  CAS  Google Scholar 

  22. Eslami H, et al. Molecular dynamics simulation of liquid–vapor phase equilibria in polar fluids. Chem Phys Lett. 2009;473:66–71.

    Article  CAS  Google Scholar 

  23. Sakamaki R, et al. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models. J Chem Phys. 2011;134(12):2011.

    Article  Google Scholar 

  24. Horsch M., et al., Steady-state molecular dynamics simulation of vapor to liquid nucleation with McDonald's daemon, arXiv: 0911.5485.

  25. Yamamoto R, Nakanishi K. Computer simulation of vapor-liquid phase separation. Mol Simul. 1996;16:119–26.

    Article  CAS  Google Scholar 

  26. Sekine M, et al. Liquid-vapor nucleation simulation of Lennard-Jones fluid by molecular dynamics method. Fluid Dyn Res. 2008;40:597–605.

    Article  Google Scholar 

  27. Mikic BB. On bubble growth rates. Int J Heat Mass Transf. 1970;13:657–66.

    Article  Google Scholar 

  28. Carey P. Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Bristol, PA: Taylor & Francis; 1992.

    Google Scholar 

  29. Tehver J, et al. Heat transfer and hysteresis phenomena in boiling on porous plasma-sprayed surface. Exp Therm Fluid Sci. 1992;5:714–27.

    Article  CAS  Google Scholar 

  30. Chang JY, You SM. Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72. Int J Heat Mass Transf. 1997;40:4427–47.

    Google Scholar 

  31. Rainey KN, You SM. Effects of heater size and orientation on pool boiling heat transfer from microporous coated surfaces. Int J Heat Mass Transf. 2001;44:2589–99.

    Article  CAS  Google Scholar 

  32. Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Trans Compon Packag Technol. 2001;24:122–41.

    Article  CAS  Google Scholar 

  33. Honda H, Wei J. Enhanced boiling heat transfer from electronic components by use of surface microstructures. Exp Therm Fluid Sci. 2014;28:159–69.

    Article  Google Scholar 

  34. Frank M., et al., Thermal conductivity of nanofluid in nanochannels" Microfluid Nanofluid, 19; 2015: 1011–1017.

  35. Ilčin M, et al. Water liquid-vapor equilibrium by molecular dynamics: Alternative equilibrium pressure estimation. Acta Chimica Slovaca. 2016;9(1):36–43.

    Article  Google Scholar 

  36. Alder, B.J. and Wainwright, T.E., Studies in molecular dynamics. I. General method. J Chem Phys 31(2); 1959: 459.

  37. LenMayo SL, et al. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–909.

    Article  Google Scholar 

  38. Mayo SL, et al. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–909.

    Article  CAS  Google Scholar 

  39. Murray S, Baskes M. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B Am Phys Soc. 1984;29(12):6443–53.

    Article  Google Scholar 

  40. Duane R, Roller DHD, The development of the concept of electric charge: electricity from the Greeks to Coulomb. Cambridge, MA: Harvard University Press. 79, 1954.

  41. Sirk TWS, et al. Characteristics of thermal conductivity in classical water models. J Chem Phys. 2013;138(064505):123–37.

    Google Scholar 

  42. Kang J, Wang LW. First-principles Green–Kubo method for thermal conductivity calculations. Phys Rev B. 2018;96(2):2018.

    Google Scholar 

  43. Juris M, et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem. 2016;88(3):265–91.

    Article  Google Scholar 

  44. Gleick PH, Water in Crisis: A Guide to the World's Freshwater Resources. Oxford University Press. 13, 1993

  45. Powell T, et al, Ho and Klemens, Purdue Research Foundation, TPRC Data Series 3, 1970

  46. Saterlie M, et al. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett. 2011;6(1):217.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dehkordi BAF, Abdollahi A. Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and basefluid type on the thermal conductivity of CuO-loaded nanofluids. Int Commun Heat Mass Transf. 2018;97:151–62.

    Article  CAS  Google Scholar 

  48. Orooji Y, et al. Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram Int. 2019;45:16015–21.

    Article  CAS  Google Scholar 

  49. Peng Y, Zahedidastjerdi A, Abdollahi A, et al. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139:2623–31.

    Article  CAS  Google Scholar 

  50. Orooji Y, et al. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram Int. 2019;45:16288–96.

    Article  CAS  Google Scholar 

  51. Razmjou A, et al. Lithium ion-selective membrane with 2D subnanometer channels. Water Res. 2019;159:313–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammadreza Niknejadi or Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Niknejadi, M. & Toghraie, D. Direct effect of nanoparticles on the thermal conductivity of CuO-water nanofluid in a phase transition phenomenon using molecular dynamics simulation. J Therm Anal Calorim 144, 2483–2495 (2021). https://doi.org/10.1007/s10973-020-10453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10453-z

Keywords

Navigation