Skip to main content
Log in

Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we have synthesized copper oxide nanoparticles (CuO NPs) by a precipitation method using leaf extract of Malva sylvestris as a stabilizing agent and three different copper precursors. The obtained CuO NPs have been characterized in detail by X-ray diffraction, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy. The as-prepared CuO NPs present the same pure chemical composition and belong to a monoclinic crystalline phase, with a spherical shape and crystallite diameter in the range of 19–26 nm, according to their precursors. Based on the differential scanning calorimetry (DSC) analyses performed at different heating rates, the thermal behavior of pure nitrocellulose (NC) and NC-CuO NPs composites has been investigated using four integral isoconversional kinetic methods. The obtained results show that, whatever the precursor, CuO NPs could be safely used as a catalyst for NC. Moreover, the added nanocatalysts could reduce the activation energy and slightly decrease the peak temperature. Finally, the thermal decomposition process of both NC and NC-CuO composites determined with Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa) models, respectively, is classified as R2, contracting cylinder \(g \, \left( \alpha \right) \, = 1 - (1 - \alpha )^{\frac{1}{2}}\), whereas that of Trache–Abdelaziz–Siwani integral model is ascribed to F1/3 and F3/4 chemical reaction \(g \, \left( \alpha \right) \, = 1 - (1 - \alpha )^{\frac{2}{3}}\).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience. 2015;5(3):135–9.

    Article  Google Scholar 

  2. Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomater. 2014;2014:17.

    Article  Google Scholar 

  3. Hu Y, Yang S, Tao B, Liu X, Lin K, Yang Y, et al. Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum. 2019;159:105–11.

    Article  CAS  Google Scholar 

  4. Ghosh D, Majumder S, Sharma P. Anticancerous activity of transition metal oxide nanoparticles. NanoBioMedicine. Singapore: Springer; 2020. p. 107–37.

    Google Scholar 

  5. Zhang D, Cao C-Y, Lu S, Cheng Y, Zhang H-P. Experimental insight into catalytic mechanism of transition metal oxide nanoparticles on combustion of 5-Amino-1H-Tetrazole energetic propellant by multi kinetics methods and TG-FTIR-MS analysis. Fuel. 2019;245:78–88.

    Article  CAS  Google Scholar 

  6. Yang C, Xiao F, Wang J, Su X. Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing. J Colloid Interface Sci. 2014;435:34–42.

    Article  CAS  PubMed  Google Scholar 

  7. Ibupoto Z, Tahira A, Raza H, Ali G, Khand A, Jilani N, et al. Synthesis of heart/dumbbell-like CuO functional nanostructures for the development of uric acid biosensor. Materials. 2018;11(8):1378.

    Article  PubMed Central  Google Scholar 

  8. Sundar S, Venkatachalam G, Kwon S. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials. 2018;8(10):823.

    Article  PubMed Central  Google Scholar 

  9. Sun S, Zhang X, Zhang J, Wang L, Song X, Yang Z. Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm. 2013;15(5):867–77.

    Article  CAS  Google Scholar 

  10. Wang C, Li Q, Wang F, Xia G, Liu R, Li D, et al. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl Mater Interfaces. 2014;6(2):1243–50.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Mu S, Sun W, Liu Q, Li Y, Yan Z, et al. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes. Nanoscale. 2016;8(48):19994–20000.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou K, Wang R, Xu B, Li Y. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology. 2006;17(15):3939.

    Article  CAS  Google Scholar 

  13. Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;129:255–8.

    Article  CAS  Google Scholar 

  14. Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu H. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc. 2009;131(13):4576–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloy Compd. 2008;464(1–2):532–6.

    Article  CAS  Google Scholar 

  16. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.

    Article  CAS  Google Scholar 

  17. Gacia PD, Shrestha LK, Bairi P, Sanchez-Ballester NM, Hill JP, Boczkowska A, et al. Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. Ceram Int. 2015;41(8):9426–32.

    Article  CAS  Google Scholar 

  18. Mallakpour S, Madani M. A review of current coupling agents for modification of metal oxide nanoparticles. Prog Org Coat. 2015;86:194–207.

    Article  CAS  Google Scholar 

  19. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci. 2014;60:208–337.

    Article  CAS  Google Scholar 

  20. Umar A, Alshahrani A, Algarni H, Kumar R. CuO nanosheets as potential scaffolds for gas sensing applications. Sens Actuators B Chem. 2017;250:24–31.

    Article  CAS  Google Scholar 

  21. Rahnama A, Gharagozlou M. Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt Quant Electron. 2012;44(6–7):313–22.

    Article  CAS  Google Scholar 

  22. Tran TH, Nguyen VT. Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. Int Sch Res Not. 2014;2014:1–14.

    Google Scholar 

  23. Hussain I, Singh N, Singh A, Singh H, Singh S. Green synthesis of nanoparticles and its potential application. Biotech Lett. 2016;38(4):545–60.

    Article  CAS  Google Scholar 

  24. Gunalan S, Sivaraj R, Venckatesh R. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;97:1140–4.

    Article  CAS  Google Scholar 

  25. Padil VVT, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed. 2013;8:889.

    Google Scholar 

  26. Gasparetto JC, Martins CAF, Hayashi SS, Otuky MF, Pontarolo R. Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J Pharm Pharmacol. 2012;64(2):172–89.

    Article  CAS  PubMed  Google Scholar 

  27. Barros L, Carvalho AM, Ferreira IC. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: a comparative study of the nutraceutical potential and composition. Food Chem Toxicol. 2010;48(6):1466–72.

    Article  CAS  PubMed  Google Scholar 

  28. Zohra SF, Meriem B, Samira S, Muneer MA. Phytochemical screening and identification of some compounds from mallow. J Nat Prod Plant Resour. 2012;2(4):512–6.

    Google Scholar 

  29. Esfanddarani HM, Kajani AA, Bordbar A-K. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity. IET Nanobiotechnol. 2017;12(4):412–6.

    Article  Google Scholar 

  30. Govindarajan M, Hoti S, Rajeswary M, Benelli G. One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol Res. 2016;115(7):2685–95.

    Article  PubMed  Google Scholar 

  31. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog. 2006;22(2):577–83.

    Article  CAS  PubMed  Google Scholar 

  32. Awwad A, Albiss B, Salem N. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med J. 2015;2(1):91–101.

    Google Scholar 

  33. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96.

    Article  CAS  Google Scholar 

  34. Zhang Y, Wang F, Gao K, Liu Y, Shao Z. Alcogel and aerogel of nitrocellulose formed in nitrocellulose/acetone/ethanol ternary system. Int J Polym Mater Polym Biomater. 2016;65(8):377–83.

    Article  CAS  Google Scholar 

  35. Yang X, Li Y, Wang Y, Yang Y, Hao J. Nitrocellulose-based hybrid materials with T7-POSS as a modifier: effective reinforcement for thermal stability, combustion safety, and mechanical properties. J Polym Res. 2017;24(3):50.

    Article  Google Scholar 

  36. He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12.

    Article  CAS  PubMed  Google Scholar 

  37. Benhammada A, Trache D, Kesraoui M, Tarchoun AF, Chelouche S, Mezroua A. Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. Thermochim Acta. 2020;686:178570.

    Article  CAS  Google Scholar 

  38. Zhao N, Li J, Gong H, An T, Zhao F, Yang A, et al. Effects of α-Fe2O3 nanoparticles on the thermal behavior and non-isothermal decomposition kinetics of nitrocellulose. J Anal Appl Pyrol. 2016;120:165–73.

    Article  CAS  Google Scholar 

  39. Benhammada A, Trache D, Kesraoui M, Chelouche S. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials. 2020;10(5):968.

    Article  CAS  PubMed Central  Google Scholar 

  40. Mahajan R, Makashir P, Agrawal J. Combustion behaviour of nitrocellulose and its complexes with copper oxide. Hot stage microscopic studies. J Therm Anal Calorim. 2001;65(3):935–42.

    Article  CAS  Google Scholar 

  41. Wei W, Cui B, Jiang X, Lu L. The catalytic effect of NiO on thermal decomposition of nitrocellulose. J Therm Anal Calorim. 2010;102(3):863–6.

    Article  CAS  Google Scholar 

  42. Zhang T, Zhao N, Li J, Gong H, An T, Zhao F, et al. Thermal behavior of nitrocellulose-based superthermites: effects of nano-Fe2O3 with three morphologies. RSC Adv. 2017;7(38):23583–90.

    Article  CAS  Google Scholar 

  43. Zhao N, Li J, Zhao F, An T, Hu R, Ma H. Combustion catalyst: nano-Fe2O3 and nano-thermite Al/Fe2O3 with different shapes. Dev Combust Technol. 2016;2016:325.

    CAS  Google Scholar 

  44. Li Y, Yang H, Hong Y, Yang Y, Cheng Y, Chen H. Electrospun nanofiber-based nanoboron/nitrocellulose composite and their reactive properties. J Therm Anal Calorim. 2017;130(2):1063–8.

    Article  CAS  Google Scholar 

  45. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym. 2014;104:223–30.

    Article  CAS  Google Scholar 

  46. Tarchoun AF, Trache D, Klapötke TM, Chelouche S, Derradji M, Bessa W, et al. A promising energetic polymer from posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling. Macromole Chem Phys. 2019;220:1900358.

    Article  CAS  Google Scholar 

  47. Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W. Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia. 2013;34:740–5.

    Article  CAS  Google Scholar 

  48. Huang X, Ren Z, Zheng X, Tang D, Wu X, Lin C. A facile route to batch synthesis CuO hollow microspheres with excellent gas sensing properties. J Mater Sci Mater Electron. 2018;29(7):5969–74.

    Article  CAS  Google Scholar 

  49. Zak AK, Majid WA, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 2011;13(1):251–6.

    Article  Google Scholar 

  50. Sahooli M, Sabbaghi S, Saboori R. Synthesis and characterization of mono sized CuO nanoparticles. Mater Lett. 2012;81:169–72.

    Article  CAS  Google Scholar 

  51. Safa S, Azimirad R, Safalou Moghaddam S, Rabbani M. Investigating on photocatalytic performance of CuO micro and nanostructures prepared by different precursors. Desalin Water Treat. 2016;57(15):6723–31.

    Article  CAS  Google Scholar 

  52. Abbasi MA, Khan Y, Hussain S, Nur O, Willander M. Anions effect on the low temperature growth of ZnO nanostructures. Vacuum. 2012;86(12):1998–2001.

    Article  CAS  Google Scholar 

  53. Ider M. Elaboration et caractérisation des nanomatériaux à base de métaux nobles 2017.

  54. García MA. Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys. 2011;44(28):283001.

    Article  Google Scholar 

  55. Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B. 2013;101:430–3.

    Article  CAS  Google Scholar 

  56. Yang Z, Xu J, Zhang W, Liu A, Tang S. Controlled synthesis of CuO nanostructures by a simple solution route. J Solid State Chem. 2007;180(4):1390–6.

    Article  CAS  Google Scholar 

  57. Zhang H, Shen C, Chen S, Xu Z, Liu F, Li J, et al. Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology. 2005;16(2):267.

    Article  CAS  PubMed  Google Scholar 

  58. Kim S, Umar A, Kumar R, Ibrahim AA, Kumar G. Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures. Mater Lett. 2015;156:138–41.

    Article  CAS  Google Scholar 

  59. Siddiqui H, Qureshi M, Haque FZ. Effect of copper precursor salts: facile and sustainable synthesis of controlled shaped copper oxide nanoparticles. Optik. 2016;127(11):4726–30.

    Article  CAS  Google Scholar 

  60. Wang H, Xie J, Yan K, Duan M. Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method. J Mater Sci Technol. 2011;27(2):153–8.

    Article  Google Scholar 

  61. Fan J, Tang D, Wang D. Spontaneous growth of CuO nanoflakes and microflowers on copper in alkaline solutions. J Alloy Compd. 2017;704:624–30.

    Article  CAS  Google Scholar 

  62. Kushwaha A, Moakhar RS, Goh GK, Dalapati GK. Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting. J Photochem Photobiol, A. 2017;337:54–61.

    Article  CAS  Google Scholar 

  63. Momeni M, Mirhosseini M, Nazari Z, Kazempour A, Hakimiyan M. Antibacterial and photocatalytic activity of CuO nanostructure films with different morphology. J Mater Sci Mater Electron. 2016;27(8):8131–7.

    Article  CAS  Google Scholar 

  64. Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2–3):1141–4.

    Article  CAS  PubMed  Google Scholar 

  65. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K. Compatibility assessment and decomposition kinetics of nitrocellulose with eutectic mixture of organic stabilizers. J Energ Mater. 2020;38(1):48–67.

    Article  CAS  Google Scholar 

  66. Katoh K, Ito S, Kawaguchi S, Higashi E, Nakano K, Ogata Y, et al. Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim. 2009;100(1):303–8.

    Article  Google Scholar 

  67. Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2018;53(1):100–23.

    Article  CAS  Google Scholar 

  68. Bohn MA, Volk F. Aging behavior of propellants investigated by heat generation, stabilizer consumption, and molar mass degradation. Propellants Explos Pyrotech. 1992;17(4):171–8.

    Article  CAS  Google Scholar 

  69. Benhammada A, Trache D. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev. 2019;55:1–54.

    Google Scholar 

  70. Chen S, He W, Luo C-J, An T, Chen J, Yang Y, et al. Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J Hazard Mater. 2019;368:404–11.

    Article  CAS  PubMed  Google Scholar 

  71. Nasibulin AG, Rackauskas S, Jiang H, Tian Y, Mudimela PR, Shandakov SD, et al. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Research. 2009;2(5):373–9.

    Article  CAS  Google Scholar 

  72. An T, Zhao F, Gao H, Ma H, Hao H, Yi J, et al. Preparation of super thermites and their compatibilities with DB propellants components. J Mater Eng. 2011;1(11):23–8.

    Google Scholar 

  73. Agreement S. 4147: Chemical compatibility of ammunition components with explosives (non-nuclear applications). NATO Military Agency for Standardization. 2001.

  74. Chen T, Du P, Jiang W, Liu J, Hao G, Gao H, et al. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6(87):83838–47.

    Article  CAS  Google Scholar 

  75. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  76. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.

    Book  Google Scholar 

  77. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.

    Article  CAS  Google Scholar 

  78. Coats AW, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  79. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  80. Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11(3):445–7.

    Article  Google Scholar 

  81. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A. Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta. 2019;673:78–91.

    Article  CAS  Google Scholar 

  82. Chelouche S, Trache D, Tarchoun AF, Khimeche K. Effect of organic eutectic on nitrocellulose stability during artificial aging. J Energ Mater. 2019;37(4):387–406.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalal Trache.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhammada, A., Trache, D. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior. J Therm Anal Calorim 147, 1–16 (2022). https://doi.org/10.1007/s10973-020-10469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10469-5

Keywords

Navigation