Skip to main content
Log in

A note on linear processes with tapered innovations

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2020

This article has been updated

Abstract

In the paper, we consider the partial-sum process \( {\sum}_{k=1}^{\left[ nt\right]}{X}_k^{(n)}, \) where \( \left\{{X}_n^{(n)},k\in \mathbb{Z}\right\},n\ge 1, \) is a series of linear processes with innovations having heavy-tailed tapered distributions with tapering parameter bn depending on n. We show that, depending on the properties of a filter of a linear process under consideration and on the parameter bn defining if the tapering is hard or soft, the limit process for such partial-sum process can be a fractional Brownian motion or linear fractional stable motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 19 April 2020

    Investigating the same problems for linear random fields with tapered innovations, I realized that the Hurst index of the limit FBM process and conditions on tapering parameter �� in Theorem 1 were incorrectly calculated.

References

  1. I.B. Aban,M.M. Meerschaert, and A.K. Panorska, Parameter estimation for the truncated Pareto distribution, J. Am. Stat. Assoc., 101(473):270–277, 2006.

    Article  MathSciNet  Google Scholar 

  2. A. Astrauskas, Limit theorems for sums of linearly generated random variables, Lith. Math. J., 23(2):127–134, 1983.

    Article  MathSciNet  Google Scholar 

  3. O.E. Barndorff-Nielsen, F.E. Benth, and A.E.D. Veraart, Recent advances in ambit stochastics with a view towards tempo-spatial stochastic volatility/intermittency, 2012, arXiv:1210.1354v1.

  4. O.E. Barndorff-Nielsen, A. Lunde, N. Shepard, and A.E.D. Veraart, Integer-valued trawl processes: A class of stationary infinitely divisible processes, Scand. J. Stat., 41(3):693–724, 2014.

    Article  MathSciNet  Google Scholar 

  5. A. Chakrabarty and G. Samorodnitsky, Tails in a bounded world or, is a truncated heavy tail heavy or not?, Stoch. Models, 28(1):109–143, 2012.

    Article  MathSciNet  Google Scholar 

  6. P. Doukhan, A. Jakubowski, S.R.C. Lopes, and D. Surgailis, Discrete-time trawl processes, Stochastic Processes Appl., 129(4):1326–1348, 2019.

    Article  MathSciNet  Google Scholar 

  7. E.L. Geist and T. Parsons, Undersampling power-law size distribution: Effect on the assessment of extreme natural hazards, Nat. Hazards, 72(2):565–595, 2014.

    Article  Google Scholar 

  8. L. Giraitis, H. Koul, and D. Surgailis, Large Sample Inference for Long Memory Processes, Imperial College Press, London, 2012.

    Book  Google Scholar 

  9. B. Gutenberg and C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34(4):185–188, 1944.

    Google Scholar 

  10. Y.Y. Kagan, Earthquake size distribution: Power-law with exponent β = 1/2?, Tectonophysics, 490(1–2):103–114, 2010.

    Article  Google Scholar 

  11. L.B. Klebanov, G. Temnov, and A.V. Kakosyan, Some contra-arguments for the use of stable distributions in finance, arXiv:1602.00256v1.

  12. L.B. Klebanov and I. Volchenkova, Heavy tailed distributions in finance: Reality or myth? Amateurs viewpoint, 2015, arXiv:1507.07735v1.

  13. M. Loéve, Probability Theory I, 4th ed., Grad. Texts Math., Vol. 45, Springer, New York, 1977.

  14. T. McElroy and D.N. Politis, Distribution theory for the Studentized mean for long, short, and negativememory time series, J. Econom., 177(1):60–74, 2013.

    Article  Google Scholar 

  15. V. Paulauskas, Some remarks on definition of memory for stationary random processes and fields, Lith. Math. J., 56(2):229–250, 2016.

    Article  MathSciNet  Google Scholar 

  16. V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  17. F. Sabzikar and D. Surgailis, Invariance principles for tempered fractionally integrated processes, Stochastic Processes Appl., 128(10):3419–3438, 2018.

    Article  MathSciNet  Google Scholar 

  18. G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random Processes: Models with Infinite Variance, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vygantas Paulauskas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulauskas, V. A note on linear processes with tapered innovations. Lith Math J 60, 64–79 (2020). https://doi.org/10.1007/s10986-019-09445-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09445-w

MSC

Keywords

Navigation