Skip to main content
Log in

Nanotechnology-associated coatings for aircrafts

  • Published:
Materials Science Aims and scope

Abstract

Polymeric epoxy-based composites are modified with nanopowders of silicon oxide (∼ 100 nm). By the method of spraying, these composites are applied to specimens of 2024-T3 aluminum alloy preliminary treated with molybdate solutions to get conversion layers. Three types of polymeric coatings are considered: reference, treated by silica, and with additional polyurethane coatings. The aim of modification of polymeric coatings is to absorb and/or block unwanted ions/molecules (Cl, O2, OH, H2O, etc.) and improve the protective properties of the films. The tests carried out by the method of electrochemical impedance spectroscopy, in a salt-fog chamber, and by immersion in a 0.5 M NaCl solution reveal high anticorrosion characteristics of the coating. New coatings are promising for the corrosion protection in the aircraft industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill, New York (2000).

    Google Scholar 

  2. P. A. Schweitzer, Atmospheric Degradation and Corrosion Control, Marcel Dekker, New York (1999).

    Google Scholar 

  3. D. Jones, Principles and Prevention of Corrosion, 2nd edition, Prentice Hall, Upper Saddle River, NJ (1996).

    Google Scholar 

  4. C. Corfias, N. Pebere, and C. Lacabanne, “Characterization of a thin protective coating on galvanized steel by electrochemical impedance spectroscopy and a thermostimulated current method,” Corr. Sci., 41, 1539–1555 (1999).

    Article  CAS  Google Scholar 

  5. C. Corfias, N. Pebere, and C. Lacabanne, “Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method. Influence of the polymer binder,” Corr. Sci., 42, 1337–1350 (2000).

    Article  CAS  Google Scholar 

  6. J. O. Iroh and W. Su, “Corrosion performance of polypyrrole coating applied to low-carbon steel by an electrochemical process,” Electrochim. Acta, 46, 15–24 (2000).

    Article  CAS  Google Scholar 

  7. R. J. Scully and S. T. Hensley, “Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods,” Corr. Sci., 50, No. 9, 705–716 (1994).

    CAS  Google Scholar 

  8. L. Fedrizzi, F. J. Rodriguez, S. Rossi, F. Deflorian, R. Di Maggio, “The use of electrochemical techniques to study the corrosion behavior of organic coatings on steel pretreated with Sol-Gel Zirconia Films,” Electrochim. Acta, 46, 3715–3524 (2001).

    Article  CAS  Google Scholar 

  9. L. Fedrizzi, A. Bianchi, F. Deflorian, S. Rossi, and P. L. Bonora, “Effect of chemical cleaning on the corrosion behavior of painted aluminum alloys,” Electrochim. Acta, 47, 2159–2168 (2002).

    Article  CAS  Google Scholar 

  10. M. F. Montemor, A. M. Simoes, M. G. S. Ferreira, B. Williams, and H. Edwards, “The corrosion performance of organosilane based pretreatments for coatings on galvanized steel,” Progr. Org. Coat., 38, 17–26 (2000).

    Article  CAS  Google Scholar 

  11. L. Salanais, “Prevention of corrosion in aircraft—an overview of the evolution of materials and protective treatments,” CIM Bull., 81(915), 103–110 (1988).

    Google Scholar 

  12. W. D. Callister, Jr., Materials Science and Engineering. An Introduction, 5th edition, Wiley, New York (2000).

    Google Scholar 

  13. W. S. Tait, K. A. Handrich, and S. W. Tait, “Analyzing and interpreting EIS data from internally coated steel aerosol containers,” in: Scully, Silverman, and Kending (editors), Electrochemical Impedance: Analysis and Int., ASTM STP 1188 (1993), pp. 428–437.

  14. J. R. Scully, “Electrochemical impedance of organic coated steel: correlation of impedance parameters with long-term coating deterioration,” J. Electrochem. Soc. (JES), 136, No. 4, 979 (1989).

    Article  CAS  Google Scholar 

  15. A. S. Hamdy, A. M. Baccaria, and T. Temtchenko, “Corrosion protection of AA6061 T6 by fluoropolymer coatings in NaCl solution,” Surf. Coat. Technol., 155, 176–183 (2002).

    Article  Google Scholar 

  16. R. Asmatulu and R. O. Claus, “Corrosion protection of materials surfaces by applying nanotechnology associated studies,” in: Mat. Res. Soc. Symp. Proc. (MRS 2004 Spring Meeting, Boston), Vol. 788 (2004), pp. LI 1.44.1–L11.44.6.

  17. J. M. Yeh, S. J. Liou, C. G. Lin, Y. P. Change, Y. H. Yu, and C. F. Cheng, “Effective enhancement of anticorrosion properties of polystyrene by polystyrene-clay nanocomposite materials,” J. Appl. Polymer Sci., 92, 1970–1976 (2004).

    Article  CAS  Google Scholar 

  18. V. J. Gelling, M. M. Weist, D. E. Tallman, G. P. Bierwagen, and G. G. Wallace, “Electroactive-conducting polymers for corrosion control. 4. Studies of poly(3-octyl)pyrrole and poly(3-octadecyl)pyrrole on aluminum 2024-T3 alloy,” Progr. Organ. Coat., 43, 149–157 (2001).

    Article  CAS  Google Scholar 

  19. Q. L. Thu, G. P. Bierwagen, and S. Touzain, “EIS and ENM measurements for three different organic coatings on aluminum,” Progr. Organ. Coat., 42, 179–187 (2001).

    Article  Google Scholar 

  20. T. L. Metroke, O. Kachurian, and E. T. Knobbe, “Spectroscopic and corrosion resistance characterization of GLYMO-TEOS ormosil coating for aluminum alloy corrosion inhibition,” Progr. Organ. Coat., 44, No. 202, 295–305.

  21. D. Chidambaram, M. J. Vasquez, G. P. Halada, and C. R. Clayton, “Studies on the repassivation behavior of aluminum and aluminum alloy exposed to chromate solutions,” Surf. Interf. Anal., 35, 226–230 (2003).

    Article  CAS  Google Scholar 

  22. L. De Rosa, T. Monetta, F. Bellucci, D. B. Mitton, A. Atienza, and C. Sinagra, “The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys,” Progr. Organ. Coat., 44, 153–160 (2002).

    Article  Google Scholar 

  23. R. Asmatulu, R. O. Claus, and I. Tuzcu, “Adhesion failure of thin-film coatings by internal and external stresses at interfaces,” in: Proc. of the Fifth Internat. Congr. on Thermal Stresses and Related Topics, TS2003 (June 2003, Blacksburg) Blacksburg, VA (2003), pp. MA-6-3-1–MA-6-3-4.

  24. http://www.lasurface.com/w_month_subj/ECASIA2001/Adsorption%20of%20organic%20acids.pdf.

  25. G. Grundmeier, W. Schmidt, and M. Stratmann, “Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation,” Electrochem. Acta, 45, 2515–2533 (2000).

    Article  CAS  Google Scholar 

  26. C. S. Kumar, V. S. Rao, V. S. Raja, A. K. Sharma, and S. M. Mayanna, “Corrosion behavior of solar reflector coatings on AA 2024T3—an electrochemical impedance spectroscopy study,” Corr. Sci., 44, 387–393 (2002).

    Article  Google Scholar 

  27. ASTM B117: Standard Practice for Operating Salt Spray (Fog) Apparatus, ASTM International (1997 Edition).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 43, No. 3, pp. 103–108, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmatulu, R., Claus, R.O., Mecham, J.B. et al. Nanotechnology-associated coatings for aircrafts. Mater Sci 43, 415–422 (2007). https://doi.org/10.1007/s11003-007-0047-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-007-0047-7

Keywords

Navigation