Skip to main content
Log in

On the Harker Variation Diagrams; A Comment on “The Statistical Analysis of Compositional Data. Where Are We and Where Should We Be Heading?” by Aitchison and Egozcue (2005)

  • Short Note
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The current theoretical development of the analysis of compositional data in the article by Aitchison and Egozcue neglects the use of Harker’s variation diagrams and other similar plots as “meaningless” or “useless” on compositional data. In this work, it is shown that variation diagrams essentially are not a correlation tool but a graphical representation of the mass actions and mass balances principles in the context of a given geological system, and, when they are used correctly, they provide vital information for the igneous petrologist. The qualitative validity of the “spurious trends” in these diagrams is also shown, when they are interpreted in their proper geological framework. The example previously used by Rollinson to test the usefulness of the log-ratio transformation in the Aitchison and Egozcue article is revisited here in order to fully illustrate the proper use of this tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Ser B 44(2):139–177

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman and Hall, London

    Google Scholar 

  • Aitchison J (2003). Compositional data analysis: where are we and where should we be heading? In: Compositional data analysis workshop, Girona, Spain. CODAWORK03

  • Aitchison J, Egozcue J (2005) Compositional data analysis: Where are we and where should we be heading? Math Geol 37(7):829–850

    Article  Google Scholar 

  • Aitchison J, Barceló-Vidal C, Martín-Fernández J, Pawlowsky-Glahn V (2000) Logratio analysis and compositional distance. Math Geol 32(3):271–275

    Article  Google Scholar 

  • Asimow P, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131

    Google Scholar 

  • Baxter M, Freestone I (2006) Log–ratio compositional data analysis in archaeometry. Archaeometry 48(3):511–531

    Article  Google Scholar 

  • Baxter M, Beardah C, Cool H, Jackson C (2005) Compositional data analysis of some alkaline glasses. Math Geol 37(2):183–196

    Article  Google Scholar 

  • Best MG (1989) Igneous and metamorphic petrology. Freeman, New York

    Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York

    Google Scholar 

  • Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65(12):4185–4193

    Article  Google Scholar 

  • Chayes F (1962) Numerical correlation and petrographic variation. J Geol 70(4):440–452

    Article  Google Scholar 

  • Cortés JA, Wilson M, Condliffe E, Francalanci L, Chertkoff DG (2005) The evolution of the magmatic system of Stromboli Volcano during the Vancori period (26-13.8 ky). J Volcanol Geother Res 147(1–2):1–38

    Article  Google Scholar 

  • Cortés JA, Palma J, Wilson M (2007) Deciphering magma mixing: the application of cluster analysis to the mineral chemistry of crystal populations. J Volcanol Geother Res, doi:10.1016/j.jvolgeores.2007.05.018

    Google Scholar 

  • Cox KG, Bell J, Pankhurst R (1979) The interpretation of Igneous Rocks. George Allen & Unwin, London

    Google Scholar 

  • Deer W, Howie RA, Zussman J (1997) Orthosilicates. The Geological Society, London

    Google Scholar 

  • Fenner C (1931) The residual liquids of crystallizing magmas. Miner Mag 22:539–560

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes, IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Harker A (1909) The natural history of igneous rocks. Macmillan, New York

    Google Scholar 

  • Irvine T, Baragar W (1971) A guide to the chemical classification of the common igneous rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Kuno H (1968) Differentiation of basalt magmas. In: Hess HH, Poldervaart A (eds) The Poldervaart treatise, on rocks of basaltic composition, vol 2. Interscience, New York, pp 623–688

    Google Scholar 

  • Lasaga AC (1998) Kinetic theory in earth sciences. Princeton University Press, Princeton

    Google Scholar 

  • Miller W (2002) Revisiting the geometry of a ternary diagram with the half-taxi metric. Math Geol 34(3):275–289

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2006) Compositional data and their analysis: an introduction. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences: from theory to practice, vol 264. Geological Society of London, London, pp 1–10

    Google Scholar 

  • Pearson K (1897) Mathematical contributions to the theory of evolution on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond LX:489–502

    Google Scholar 

  • Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans Green and Co, London

    Google Scholar 

  • Rollinson H (1992) Another look at the constant sum problem in geochemistry. Mineral Mag 56:469–475

    Article  Google Scholar 

  • Sadovski A (1974) L1-norm fit of a straight line. Appl Stat 23(2):244–248

    Article  Google Scholar 

  • Shurtz R (2000) Comment on “Logratios and natural laws in compositional data analysis” by J. Aitchison. Math Geol 32(5):645–647

    Article  Google Scholar 

  • Shurtz R (2003) Compositional geometry and mass conservation. Math Geol 35(8):927–937

    Article  Google Scholar 

  • Spera F, Bohrson W (2004a) Energy-constrained open-system magmatic processes, I: general model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J Petrol 42:999–1018

    Article  Google Scholar 

  • Spera F, Bohrson W (2004b) Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC’RA χ FC). J Petrol 45:2459–2480

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Book  Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín A. Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, J.A. On the Harker Variation Diagrams; A Comment on “The Statistical Analysis of Compositional Data. Where Are We and Where Should We Be Heading?” by Aitchison and Egozcue (2005). Math Geosci 41, 817–828 (2009). https://doi.org/10.1007/s11004-009-9222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-009-9222-8

Keywords

Navigation