Skip to main content

Advertisement

Log in

First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the work described here, we developed the first multi-target quantitative structure–activity relationship (QSAR) model able to predict the results of 42 different experimental tests for GSK-3 inhibitors with heterogeneous structural patterns. GSK-3β inhibitors are interesting candidates for developing anti-Alzheimer compounds. GSK-3β are also of interest as anti-parasitic compounds active against Plasmodium falciparum, Trypanosoma brucei, and Leishmania donovani; the causative agents for Malaria, African Trypanosomiasis and Leishmaniosis. The MARCH-INSIDE technique was used to quickly calculate total and local polarizability, n-octanol/water partition coefficients, refractivity, van der Waals area and electronegativity values to 4,508 active/non-active compounds as well as the average values of these indexes for active compounds in 42 different biological assays. Both the individual molecular descriptors and the average values for each test were used as input for a linear discriminant analysis (LDA). We discovered a classification function which used in training series correctly classifies 873 out of 1,218 GSK-3 cases of inhibitors (97.4%) and 2,140 out of 2,163 cases of non-active compounds (86.1%) in the 42 different tests. In addition, the model correctly classifies 285 out of 406 GSK-3 inhibitors (96.3%) and 710 out of 721 cases of non-active compounds (85.4%) in external validation series. The result is important because, for the first time, we can use a single equation to predict the results of heterogeneous series of organic compounds in 42 different experimental tests instead of developing, validating, and using 42 different QSAR models. Lastly, a double ordinate Cartesian plot of cross-validated residuals (first ordinate), standard residuals (second ordinate), and leverages (abscissa) defined the domain of applicability of the model as a squared area within ±2 band for residuals and a leverage threshold of h = 0.0044.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olson RE (2000) Secretase inhibitors as therapeutics for Alzheimer’s disease. Ann Rep Med Chem 35: 31–40. doi:10.1016/S0065-7743(00)35005-9

    Article  CAS  Google Scholar 

  2. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9: 2431–2438

    PubMed  CAS  Google Scholar 

  3. Woodgett JR (1991) cDNA cloning and properties of glycogen synthase kinase-3 methods. Enzymol 200: 564–577. doi:10.1016/0076-6879(91)00172-S

    Article  CAS  Google Scholar 

  4. Ali A, Hoeflich KP, Woodgett JR (2001) Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev 101: 2527–2540. doi:10.1021/cr000110o

    Article  PubMed  CAS  Google Scholar 

  5. Ishiguro K, Ihara Y, Uchida T, Imahori K (1988) A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau. J BioChem 104(3): 319–321

    PubMed  CAS  Google Scholar 

  6. Fairlamb AH (2003) Chemotherapy on human African trypanosomiasis: current and future prospects. Trends Parasitol 19: 488–494. doi:10.1016/j.pt.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  7. Plyte SE, Hughes K, Nilkolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114: 147–162. doi:10.1016/0304-419X(92)90012-N

    PubMed  CAS  Google Scholar 

  8. Ojo KK, Gillespie RG, Riechers A, Napuli AJ, Verlinde CL, Buckner FS et al (2008) Glycogen synthase kinase 3 is a potential drug target for african trypanosomiasis therapy.AntimicrobAgents Chemother 3710–3717

    Article  PubMed  CAS  Google Scholar 

  9. Freund JA, Poschel T (2000) Stochastic processes in physics, chemistry, and biology (lecture notes in physics). Springer-Verlag, Berlin

    Book  Google Scholar 

  10. Estrada E, Uriarte E (2001) Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8: 1573–1588. doi:10.2174/0929867013371923

    PubMed  CAS  Google Scholar 

  11. Estrada E, Uriarte E, Montero A, Teijeira M, Santana L, De Clercq E (2001) A novel approach for the virtual screening and rational design of anticancer compounds. J Med Chem 43: 1975–1985

    Article  Google Scholar 

  12. Prado-Prado FJ, Borges F, Perez-Montoto LG, Gonzalez-Diaz H (2009) Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. Eur J Med Chem 44: 4051–4056. doi:10.1016/j.ejmech.2009.04.040

    Article  PubMed  CAS  Google Scholar 

  13. González-Díaz H, Torres-Gomez LA, Guevara Y, Almeida MS, Molina R, Castanedo N et al (2005) Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design III: 2.5D indices for the discovery of antibacterials. J Mol Model 11: 116–123. doi:10.1007/s00894-004-0228-3

    Article  PubMed  Google Scholar 

  14. Gonzalez-Díaz H, Prado-Prado F, Ubeira FM (2008) Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem 8: 1676–1690. doi:10.2174/156802608786786543

    Article  PubMed  Google Scholar 

  15. Santana L, Uriarte E, González-Díaz H, Zagotto G, Soto-Otero R, Mendez-Alvarez E (2006) A QSAR model for in silico screening of MAO-A inhibitors. Prediction, synthesis, and biological assay of novel coumarins. J Med Chem 49: 1149–1156. doi:10.1021/jm0509849

    Article  PubMed  CAS  Google Scholar 

  16. Concu R, Dea-Ayuela MA, Perez-Montoto LG, Bolas-Fernandez F, Prado-Prado FJ, Podda G et al (2009) Prediction of enzyme classes from 3D structure: a general model and examples of experimental-theoretic scoring of peptide mass fingerprints of Leishmania proteins. J Proteome Res 8: 4372–4382. doi:10.1021/pr9003163

    Article  PubMed  CAS  Google Scholar 

  17. Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Standardized multiple regression model. Applied linear statistical models, 5th edn. McGraw Hill, New York, pp 271–277

    Google Scholar 

  18. Hall Ca (1996) The Merck Index, 12th ed. Merck & Co, New Jersey

    Google Scholar 

  19. Van Waterbeemd H (1995) Discriminant analysis for activity prediction. In: Van Waterbeemd H (ed) Chemometric methods in molecular design. Wiley-VCH, New York, pp 265–282

    Chapter  Google Scholar 

  20. Konda VR, Desai A, Darland G, Bland JS, Tripp ML (2009) Rho iso-alpha acids from hops inhibit the GSK-3/NF-kappaB pathway and reduce inflammatory markers associated with bone and cartilage degradation. J inflamm (Lond) 6: 26–34. doi:10.1186/1476-9255-6-26

    Article  Google Scholar 

  21. Jacquemard U, Dias N, Lansiaux A, Bailly C, Loge C, Robert JM et al (2008) Synthesis of 3,5-bis(2-indolyl)pyridine and 3-[(2-indolyl)-5-phenyl]pyridine derivatives as CDK inhibitors and cytotoxic agents. Bioorg Med Chem 16: 4932–4953

    Article  PubMed  CAS  Google Scholar 

  22. Olesen PH, Sorensen AR, Urso B, Kurtzhals P, Bowler AN, Ehrbar U et al (2003) Synthesis and in vitro characterization of 1-(4-aminofurazan-3-yl)-5-dialkylaminomethyl-1H-[1,2,3]triazole-4-carboxyl ic acid derivatives. A new class of selective GSK-3 inhibitors. J Med Chem 46: 3333–3341. doi:10.1021/jm021095d

    Article  PubMed  CAS  Google Scholar 

  23. Calabuig C, Anton-Fos GM, Galvez J, Garcia-Domenech R (2004) New hypoglycaemic agents selected by molecular topology. Int J Pharm 278: 111–118. doi:10.1016/j.ijpharm.2004.03.012

    Article  PubMed  CAS  Google Scholar 

  24. Cercos-del-Pozo RA, Perez-Gimenez F, Salabert-Salvador MT, Garcia-March FJ (2000) Discrimination and molecular design of new theoretical hypolipaemic agents using the molecular connectivity functions. J Chem Inf Comput Sci 40: 178–184. doi:10.1021/ci9900480

    PubMed  CAS  Google Scholar 

  25. Murcia-Soler M, Perez-Gimenez F, Garcia-March FJ, Salabert-Salvador MT, Diaz-Villanueva W, Medina-Casamayor P (2003) Discrimination and selection of new potential antibacterial compounds using simple topological descriptors. J Mol Graph Model 21: 375–390. doi:10.1016/S1093-3263(02)00184-5

    Article  PubMed  CAS  Google Scholar 

  26. Estrada E, Vilar S, Uriarte E, Gutierrez Y (2002) In silico studies toward the discovery of new anti-HIV nucleoside compounds with the use of TOPS-MODE and 2D/3D connectivity indices. 1. Pyrimidyl derivatives. J Chem Inf Comput Sci 42: 1194–1203. doi:10.1021/ci0255331

    PubMed  CAS  Google Scholar 

  27. Cronin MT, Aptula AO, Dearden JC, Duffy JC, Netzeva TI, Patel H et al (2002) Structure-based classification of antibacterial activity. J Chem Inf Comput Sci 42: 869–878. doi:10.1021/ci025501d

    PubMed  CAS  Google Scholar 

  28. Prado-Prado FJ, Ubeira FM, Borges F, Gonzalez-Diaz H (2010) Unified QSAR & network-based computational chemistry approach to antimicrobials. II. Multiple distance and triadic census analysis of antiparasitic drugs complex networks. J Comput Chem 31: 164–173. doi:10.1002/jcc.21292

    Article  PubMed  CAS  Google Scholar 

  29. Prado-Prado FJ, Martinez de la Vega O, Uriarte E, Ubeira FM, Chou KC, Gonzalez-Diaz H (2009) Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorg Med Chem 17: 569–575. doi:10.1016/j.bmc.2008.11.075

    Article  PubMed  CAS  Google Scholar 

  30. Oberg T (2004) A QSAR for baseline toxicity: validation, domain of application, and prediction. Chem Res Toxicol 17: 1630–1637. doi:10.1021/tx0498253

    Article  PubMed  Google Scholar 

  31. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26: 694–701. doi:10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  32. Eriksson L, Jaworska J, Worth AP, Cronin MT, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111: 1361–1375. doi:10.1289/ehp.5758

    Article  PubMed  CAS  Google Scholar 

  33. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22: 69–77. doi:10.1002/qsar.200390007

    Article  CAS  Google Scholar 

  34. Melagraki G, Afantitis A, Sarimveis H, Koutentis PA, Kollias G, Igglessi-Markopoulou O (2009) Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors. Mol Divers. 13: 301–311. doi:10.1007/s11030-009-9115-2

    Article  PubMed  CAS  Google Scholar 

  35. Li J, Gramatica P (2009) The importance of molecular structures, endpoints’ values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders. Mol Divers. doi:10.1007/s11030-009-9212-2

  36. Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model 45: 1256–1266. doi:10.1021/ci050212l

    Article  PubMed  CAS  Google Scholar 

  37. Liu H, Papa E, Gramatica P (2006) QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol 19: 1540–1548. doi:10.1021/tx0601509

    Article  PubMed  CAS  Google Scholar 

  38. Gramatica P, Giani E, Papa E (2006) Statistical external validation and consensus modeling: a QSPR case study for K(oc) prediction. J Mol Graph Model 25: 755–766. doi:10.1016/j.jmgm.2006.06.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isela García.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, I., Fall, Y., Gómez, G. et al. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol Divers 15, 561–567 (2011). https://doi.org/10.1007/s11030-010-9280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9280-3

Keywords

Navigation