Skip to main content
Log in

Amoebas of Complex Hypersurfaces in Statistical Thermodynamics

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

The amoeba of a complex hypersurface is its image under the logarithmic projection. A number of properties of algebraic hypersurface amoebas are carried over to the case of transcendental hypersurfaces. We demonstrate the potential that amoebas can bring into statistical physics by considering the problem of energy distribution in a quantum thermodynamic ensemble. The spectrum \(\{\varepsilon_k\}\subset \mathbb{Z}^n\) of the ensemble is assumed to be multidimensional; this leads us to the notions of multidimensional temperature and a vector of differential thermodynamic forms. Strictly speaking, in the paper we develop the multidimensional Darwin–Fowler method and give the description of the domain of admissible average values of energy for which the thermodynamic limit exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  2. Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. 151, 309–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kenyon, R., Okounkov, A.: Planar dimers and Harnak curves. Duke Math. J. 131, 499–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebas. Ann. Math. 163(2), 1019–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leinartas, E., Passare, M., Tsikh, A.: Multidimensional versions of Poincaré’s theorem for difference equations. Mat. Sb. 199, 87–104 (2008)

    Article  MathSciNet  Google Scholar 

  6. Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties. J. Reine Angew. Math. (Crelles Journal) 601, 139–157 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Shrödinger, E.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1948)

    Google Scholar 

  8. Zorich, V.: Mathematical Analysis of Problems in the Natural Sciences. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Kapranov, M.: Thermodynamics and the moment map. arXiv.org/abs/1108.3472v1 (2011)

  10. Darwin, C.G., Fowler R.: On the partition of energy. Phil. Mag. 44, 450–479 (1922)

    Google Scholar 

  11. Darwin, C.G., Fowler R.: Statistical principles and thermodynamics. Phil. Mag. 44, 823–842 (1922)

    Google Scholar 

  12. Itenberg, I., Mikhalkin, G.: Geometry in the tropical limit. http://arXiv.org/abs/1108.3111v2 (2011)

  13. Forsberg, M., Passare, M., Tsikh, A.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151, 54–70 (2000)

    Article  MathSciNet  Google Scholar 

  14. Passare, M., Rullgård, H.: Amoebas, Monge–Ampere measures, and triangulations of the Newton polytop. Duke Math. J. 121, 481–507 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Passare, M., August Tsikh, A.: Amoebas: their spines and their contours. Contemp. Math. 377, 275–288 (2005)

    Article  Google Scholar 

  16. Mkrtchian, M., Yuzhakov, A.: The Newton polytope and the Laurent series of rational functions of n variables (in Russian). Izv. Akad. Nauk ArmSSR. 17, 99–105 (1982)

    Google Scholar 

  17. Passare, M., Sadykov, T., Tsikh, A.: Singularities of hypergeometric functions in several variables. Compos. Math. 141, 787–810 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leray, J.: Le calcul différentiel et integral sur une variété analytique complexe (Probléme de Cauchy, III) Fascicule II. Bull. Soc. Math. Fr. 87, 81–180 (1959)

    MathSciNet  MATH  Google Scholar 

  19. Kapranov, M.: A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map. Math. Ann. 290(1), 277–285 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pochekutov, D., Tsikh, A.: Asymptotics of Laurent coefficients and its application in statistical mechanics (in Russian). J. SibFU Math. Phys. 2, 483–493 (2009). http://mi.mathnet.ru/eng/jsfu95

    Google Scholar 

  21. Tsikh, A.: Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables. Math. USSR Sb. 74, 337–360 (1993)

    Article  MathSciNet  Google Scholar 

  22. Fedoryuk, M.: The Saddle-Point Method (in Russian). Nauka, Moscow (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Pochekutov.

Additional information

The second author was supported by RFBR grant 09-09-00762 and “Möbius Competition” fund for support to young scientists. The third author was supported by the Russian Presidential grant NŠ-7347.2010.1 and by RFBR 11-01-00852.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passare, M., Pochekutov, D. & Tsikh, A. Amoebas of Complex Hypersurfaces in Statistical Thermodynamics. Math Phys Anal Geom 16, 89–108 (2013). https://doi.org/10.1007/s11040-012-9122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-012-9122-x

Keywords

Navigation