Skip to main content
Log in

HumanTop: a multi-object tracking tabletop

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a computer vision based interactive multi-touch tabletop system called HumanTop is introduced. HumanTop implements a stereo camera vision subsystem which allows not only an accurate fingertip tracking algorithm but also a precise touch-over-the-working surface detection method. Based on a pair of visible spectra cameras, a novel synchronization circuit makes the camera caption and the image projection independent from each other, providing the minimum basis for the development of computer vision analysis based on visible spectrum cameras without any interference coming from the projector. The assembly of both cameras and the synchronization circuit is not only capable of performing an ad-hoc version of a depth camera, but it also introduces the recognition and tracking of textured planar objects, even when contents are projected over them. On the other hand HumanTop supports the tracking of sheets of paper and ID-code markers. This set of features makes the HumanTop a comprehensive, intuitive and versatile augmented tabletop that provides multitouch interaction with projective augmented reality on any flat surface. As an example to exploit all the capabilities of HumanTop, an educational application has been developed using an augmented book as a launcher to different didactic contents. A pilot study in which 28 fifth graders participated is presented. Results about efficiency, usability/satisfaction and motivation are provided. These results suggest that HumanTop is an interesting platform for the development of educational contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agarwal A, Izadi S, Chandraker M, Blake A (2007) High precision multi-touch sensing on surfaces using overhead cameras. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 197–200

  2. Alexa M, Bollensdorff B, Bressler I, Elstner S, Hahne U, Kettlitz N, Lindow N, Lubkoll R, Richter R, Stripf C et al (2008) Continuous reference images for ftir touch sensing. In: ACM SIGGRAPH poster. ACM, p 49

  3. Argyros A, Lourakis M (2006) Vision-based interpretation of hand gestures for remote control of a computer mouse. In: Comput. vis. hum.-comput. interact., pp 40–51

  4. Barnes C, Jacobs D, Sanders J, Goldman D, Rusinkiewicz S, Finkelstein A, Agrawala M (2008) Video puppetry: a performative interface for cutout animation. ACM Trans Graph (TOG) 27:124

    Article  Google Scholar 

  5. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly Media

  6. Campbell D, Stanley J, Gage N (1963) Experimental and quasi-experimental designs for research. Houghton Mifflin, Boston

    Google Scholar 

  7. Chen D, Zhang G (2005) A new sub-pixel detector for x-corners in camera calibration targets. In: 13th int. conf. cent. Eur. comput. graph., vis. comput. vis.

  8. Dietz P, Leigh D (2001) Diamondtouch: a multi-user touch technology. In: Proc. 14th ACM symp. user interface softw. technol. ACM, pp 219–226

  9. Do-Lenh S, Kaplan F, Sharma A, Dillenbourg P (2009) Multi-finger interactions with papers on augmented tabletops. In: Proc. 3rd int. conf. tangible embed. int. ACM, pp 267–274

  10. Dung L, Mizukawa M (2009) Fast hand feature extraction based on connected component labeling, distance transform and hough transform. J. Robot. Mechatronics 21(6):726–738

    Google Scholar 

  11. Echtler F, Sielhorst T, Huber M, Klinker G (2009) A short guide to modulated light. In: Proc. 3rd int. conf. tang. embed. interact. ACM, pp 393–396

  12. Echtler F, Pototschnig T, Klinker G (2010) An led-based multitouch sensor for lcd screens. In: Proc. 4th int. conf. tang. embed. interact.. ACM, pp 227–230

  13. Han J (2005) Low-cost multi-touch sensing through frustrated total internal reflection. In: Proc. 18th ACM symp. user interface softw. technol. ACM, pp 115–118

  14. Holman D, Vertegaal R, Altosaar M, Troje N, Johns D (2005) Paper windows: interaction techniques for digital paper. In: Proc. SIGCHI conf. hum. factor comput. syst. ACM, pp 591–599

  15. Izadi S, Agarwal A, Criminisi A, Winn J, Blake A, Fitzgibbon A (2007) C-slate: a multi-touch and object recognition system for remote collaboration using horizontal surfaces. In: IEEE int. workshop horiz. interact. hum.-comput. interact., TABLETOP’07. IEEE, pp 3–10

  16. Jordà S, Geiger G, Alonso M, Kaltenbrunner M (2007) The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proc. 1st int. conf. tangible embed. interact. ACM, pp 139–146

  17. Kaltenbrunner M (2009) Reactivision and tuio: a tangible tabletop toolkit. In: Proc. ACM int. conf. interact. tabletop. surf. ACM, pp 9–16

  18. Katz I, Gabayan K, Aghajan H (2007) A multi-touch surface using multiple cameras. In: Proc. 9th int. conf. adv. concept. intell. vis. syst.. Springer, pp 97–108

  19. Kim K, Lepetit V, Woo W (2010) Scalable real-time planar targets tracking for digilog books. Vis Comput 26(6):1145–1154

    Article  Google Scholar 

  20. Lee T, Hollerer T (2007) Handy ar: markerless inspection of augmented reality objects using fingertip tracking. In: 11th IEEE int. symp. wearable comput. IEEE, pp 83–90

  21. Letessier J, Bérard F (2004) Visual tracking of bare fingers for interactive surfaces. In: Proc. 17th ACM symp. user interface softw. technol. ACM, pp 119–122

  22. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55

    Google Scholar 

  23. Lucchese L, Mitra S (2002) Using saddle points for subpixel feature detection in camera calibration targets. In: Asian-Pac. conf. circuit. syst., vol 2. IEEE, pp 191–195

  24. Malik S, Laszlo J (2004) Visual touchpad: a two-handed gestural input device. In: Proc. 6th int. conf. multimodal interface. ACM, pp 289–296

  25. Manresa C, Varona J, Mas R, Perales F (2000) Real–time hand tracking and gesture recognition for human-computer interaction. In: Comput. vis. cent., pp 1–7

  26. Martín-Gutiérrez J, Luís Saorín J, Contero M, Alcañiz M, Pérez-López D, Ortega M (2010) Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph 34(1):77–91

    Article  Google Scholar 

  27. McNaughton J (2010) Utilising emerging multi-touch table designs. Durham University

  28. Microsoft (2011) Microsoft surface. URL http://www.microsoft.com/surface/

  29. Muja M, Lowe D (2009) Fast approximate nearest neighbors with automatic algorithm configuration. In: Int. conf. comput. vis. theory appl. VISSAPP, pp 331–340

  30. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: IEEE Comput. Soc. conf. comput. vis. pattern recognit., vol 2. IEEE, pp 2161–2168

  31. Oka K, Sato Y, Koike H (2002) Real-time fingertip tracking and gesture recognition. IEEE Comput Graph 22(6):64–71

    Article  Google Scholar 

  32. OpenSource (2011) Fast sift image features library. URL http://libsift.sourceforge.net/

  33. Peer P, Kovac J, Solina F (2003) Human skin color clustering for face detection, vol 2. IEEE

  34. Pilet J, Saito H (2010) Virtually augmenting hundreds of real pictures: an approach based on learning, retrieval, and tracking. In: IEEE virtual real. conf. (VR). IEEE, pp 71–78

  35. Rekimoto J (2002) Smartskin: an infrastructure for freehand manipulation on interactive surfaces. In: Proc. SIGCHI conf. hum. factor. comput. syst.. ACM, pp 113–120

  36. Shi J, Tomasi C (1994) Good features to track. In: IEEE comput. soc. conf. proc. comput. vis. pattern recognit. IEEE, pp 593–600

  37. Tomasi C, Kanade T (1991) Detection and tracking of point features. School of Computer Science, Carnegie Mellon University

  38. Verdié Y (2008) Evolution of hand tracking algorithms to mirrortrack. Tech. Rep. Vis. Interface Syst. Lab.

  39. Vos N, van der Meijden H, Denessen E (2011) Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Comput Educ 56(1):127–137

    Article  Google Scholar 

  40. Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D (2010) Real-time detection and tracking for augmented reality on mobile phones. IEEE Trans Vis Comput Graph 16(3):355–368

    Article  Google Scholar 

  41. Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, Citeseer

  42. Wilson A (2004) Touchlight: an imaging touch screen and display for gesture-based interaction. In: Proc. 6th int. conf. multimodal interface. ACM, pp 69–76

  43. Wilson A (2005) Playanywhere: a compact interactive tabletop projection-vision system. In: Proc. 18th ACM symp user interface softw. technol. ACM, pp 83–92

  44. Wilson A (2010) Using a depth camera as a touch sensor. In: ACM int. conf. interact. tabletop. surf. ACM, pp 69–72

  45. Zerofrog (2011) Libsiftfast. URL http://sourceforge.net/projects/libsift

  46. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334

    Article  Google Scholar 

  47. Zhang Z, Wu Y, Shan Y, Shafer S (2001) Visual panel: virtual mouse, keyboard and 3d controller with an ordinary piece of paper. In: Proc. workshop percept. user interface. ACM, pp 1–8

Download references

Acknowledgements

This study was funded by Ministerio de Educación y Ciencia Spain, Project SALTET (TIN2010-21296-C02-01), Project Game Teen (TIN2010-20187) projects Consolider-C (SEJ2006-14301/PSIC), “CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII” and Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educació, 2008-157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Soto Candela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candela, E.S., Pérez, M.O., Romero, C.M. et al. HumanTop: a multi-object tracking tabletop. Multimed Tools Appl 70, 1837–1868 (2014). https://doi.org/10.1007/s11042-012-1193-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1193-y

Keywords

Navigation