Skip to main content
Log in

A robust color video watermarking scheme based on hybrid embedding techniques

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The advancements in network technologies and processing of multimedia contents have provided the way for the distribution and sharing of multimedia contents through networks. This in turn has increased the demand for protecting the multimedia contents in terms of authentication, proof of ownership, copy control etc., which can be achieved by means of what is called digital watermarking. The challenges in watermarking techniques are how to achieve the imperceptibility, robustness and payload simultaneously. This paper presents a new bit plane sliced, scrambled color image watermark embedded on the color cover video using hybrid transforms such as Contourlet Transform (CT), Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) transformations with good imperceptibility, high robustness and at an information rate of (N − number of motion frames) / 24 images per second of the video, where N is the total number of frames in the video. In order to achieve a good level of imperceptibility, we perform the following: First, we slice the color watermark image into 24 slices using the bit plane slicing mechanism. Subsequently, the so called Arnold transformation key is used to scramble those slices, to achieve first-level of security. Thus, an authenticated receiver with an appropriate key alone can descramble the received slices. Second, we embed those scrambled slices on one of the DWT mid-frequency coefficients (LH band) of successive 1-level CT non-motion frames of color cover video. The non-motion frames are identified using the histogram difference based shot boundary detection algorithm. Third, in order to the provide second-level of security, we generate a random eigen vector from the color watermark image, using co-variance matrix and maximum eigen value and then embed it on another DWT mid-frequency coefficients (HL band). Thus, embedding only the slices (not an entire image) will improve the level of imperceptibility. The mid-frequency embedding location can withstand against all low pass and high pass filtering attacks; thereby it increases the level of robustness. Thus, the proposed system is suitable for authentication. Finally, as far as payload is concerned, we need only 24 non-motion frames for embedding our watermark on to the cover video. Hence the remaining frames can be utilized for embedding other color images. Our simulation results prove that the proposed system provides trustworthy performance against various notable image processing attacks, multiple attacks, geometrical attacks, and temporal attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Agilandeeswari L, Muralibabu K (2013) A robust video watermarking algorithm for content authentication using discrete wavelet transform (DWT) and singular value decomposition (SVD). Int J Secur Appl 7(4):158. http://www.sersc.org/journals/IJSIA/vol7_no4_2013/12.pdf

  2. Agilandeeswari L, Ganesan K, Muralibabu K (2013) A Side View Based Video in Video Watermarking Using DWT and Hilbert Transform. International Conference on Security in Computing and Communications (SSCC 2013), Communications in Computer and Information Science (CCIS) Springer Series, pp 366–377. http://link.springer.com/chapter/10.1007/978-3-642-40576-1_36#page-1

  3. Agilandeeswari L, Ganesan K (2015) A bi-directional associative memory based multiple image watermarking on cover video. Multimed Tools Appl. doi:10.1007/s11042-015-2642-1

  4. Akhaee MA, Sahraeian SME, Marvasti F (2010) Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE Trans Image Process 19:967–980

  5. Ali M, Ahn CW, Pant M (2014) A robust image watermarking technique using SVD and differential evolution in DCT domain. Optik 125:428–434

  6. Barni M, Bartolini F, Caldelli R, Rosa AD, Piva A (2000) A robust watermarking approach for raw video. In: Proc. 10th International Packet Video Workshop, PV2000

  7. Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3/4):313–337. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05387237

  8. Briassouli A, Strintzis MG (2004) Optimal watermark detection under quantization in the transform domain. IEEE Trans Circ Syst Video Technol 14(12):1308–1319. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1355953&userType=inst

  9. Checcacci N, Barni M, Bartolini F, Basagni S (2000) Robust video watermarking for wireless multimedia communication. IEEE Proc WCNC 3:1530–1535

  10. Cox J, Kilian J, Leighton T, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=650120&userType=inst

  11. Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T (2008) Digital watermarking and steganography, 2nd edn. Morgan Kaufmann Publisher, San Francisco

    Google Scholar 

  12. Delaigle JF, De Vleeschouwer C, Macq B (1998) Watermarking algorithm based on a human visual model. Signal Process 66(3), pp. 319–335. Available: http://www.cis.rit.edu/~cnspci/references/delaigle1998.pdf

  13. Deng C, Gao X, Li X, Tao D (2010) Local histogram based geometric invariant image watermarking. Signal Process 90:3256–3264

    Article  MATH  Google Scholar 

  14. Dharwadkar NV, Amberker BB (2009) Secure watermarking scheme for color image using intensity of pixel and LSB substitution. J Comput 1(1):1–6. Available: http://arxiv.org/ftp/arxiv/papers/0912/0912.3923.pdf

  15. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14:2091–2106 

  16. Doerr G, Dugelay J (2003) A guide tour of video watermarking. Signal Proc Image Commun 18(4):263–282

  17. Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Process 51(7):1995–2007. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1206706

  18. Ganesan K, Murali K (2014) Image Encryption using eight dimensional chaotic cat map. Eur Phys J Special Topics 223:1611–1622

  19. Gaurav Bhatnagar, Balasubramanian Raman (2009) A new robust reference watermarking scheme based on DWT-SVD. Comp Stand Inter 31:1002–1013

  20. Gonzalez RC (2012) Digital image processing, 3rd edn. Pearson Education, New York

    Google Scholar 

  21. Hao P, Shi Q (2000) Comparitive Study of color transforms for image coding and derivation integer reversible color transform. IEEE, pp 224–227. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=903526

  22. Haohao S (2009) Contourlet based adaptive watermarking for color images. IEICE Trans Inf Syst 92:2171–2174

    Google Scholar 

  23. Hong I, Kim I, Hem S (2001) A blind watermarking technique using wavelet transforms. IEEE Proc ISIE 3:1946–1950

    Google Scholar 

  24. Huang J, Shi YQ (2001) Embedding gray level images. Proc. IEEE Int. Symp. Circuits and Systems, vol. 5, Sydney, Australia, pp 239–242 Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=922029

  25. Huang J, Shi YQ (2002) Reliable information bit hiding. IEEE Trans Circ Syst Video Technol 12(10):916–920. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01058222

  26. Karybali IG, Berberidis K (2006) Efficient spatial image watermarking via new perceptual masking and blind detection schemes. IEEE Trans Inf Forensic Secur 1(2):256–274. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01634366

  27. Kundur D, Hatzinakos D (1997). A robust digital image watermarking method using wavelet-based fusion. Proc IEEE Int Conf Image Process 1:544–547, Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=647970

  28. Langelaar GC, Setyawan I, Lagendijk RL (2000). Watermarking digital image and video data. A state-of-the-art overview. IEEE Signal Proc Mag 17:20–46. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=879337

  29. Langelaar G, Setyawan I, Lagendijk R (2000) Watermarking digital image and video data. IEEE Signal Process Mag 17:20–43

    Article  Google Scholar 

  30. Lee YK, Chen LH (2000) High capacity image steganographic model. Proc IEEE 147(3):288–294, Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=852312

  31. Li L, Guo B, Pan J-S, Yang L (2009) Scale-space feature based image watermarking in contourlet domain. In: Digital watermarking. Springer p 88–102

  32. Lin CY, Wu M, Bloom J, Cox I, Miller M, Liu Y (2001) Rotation, scale, and translation resilient watermarking for images. IEEE Trans Image Process 10(5):767–782

    Article  MATH  Google Scholar 

  33. Liu Y, Zhao J (2010) A new video watermarking algorithm based on 1D DFT and Radon Transform. Signal Process 90:626–639. http://www.sciencedirect.com/science/article/pii/S0165168409003454

  34. Memon N (2001) Analysis of LSB based image steganography technique. IEEE Proc ICIP 3:1019–1022

    Google Scholar 

  35. Mukherjee DP (2004) Spatial domain digital watermarking of multimedia objects for buyer authentication. IEEE Trans Multimed 6:1–15. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1261883

  36. Nikolaidis N, Pitas I (1996) Copyright protection of images using robust digital signatures. In: Proc. IEEE ICASSP’96, pp 2168–2171

  37. Nikolaidis A, Pitas I (2003) Asymptotically optimal detection for additive watermarking in the DCT and DWT domains. IEEE Trans Image Process 12(5):563–571. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1203149&userType=inst

  38. Niu X, Sun S (2000) A new wavelet based digital watermarking for video. In: Proc. IEEE Digital Signal Processing Workshop

  39. Peterson G (1997) Arnold’s cat map survey. Math 45-Linear Algebra, pp 1–7

  40. Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding—a survey. Proc IEEE 87:1062–1077. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=771065

  41. Phadikar A, Maity SP, Rahaman H (2009) Region Specific Spatial Domain Image Watermarking Scheme. IEEE International Advance Computing Conference (IACC 2009), pp 888–893. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04809133

  42. Radwan NI, Salem NM, El Adawy MI (2012) Histogram correlation for video scene change detection. Adv Intell Soft Comput 166:765–773

    Article  Google Scholar 

  43. Rahimi F, Rabbani H et al (2011) A dual adaptive watermarking scheme in contourlet domain for dicom images. Biomed Eng Online 10:1–18

    Article  Google Scholar 

  44. Rajendra Acharya U, Acharya D, Subbanna Bhat P, Niranjan U (2001) Compact storage of medical images with patient information. IEEE Trans Inf Technol Biomed 5:320–323

    Article  Google Scholar 

  45. Ranjbar S, Zargari F, Ghanbari M (2013) A highly robust two-stage contourlet-based digital image watermarking method. Signal Process Image Commun 28:1526–1536

    Article  Google Scholar 

  46. Serdean C, Ambroze M, Tomlinson M, Wade G (2002) Combating geometrical attacks in a DWT based blind video watermarking system. In: Proc. Eurasip-IEEE VIPPromCom. p 263–6

  47. Shekhwat RS, Sivavenkateswara RV, Srivastava VK (2012) A Robust Watermarking technique based on Biorthogonal Wavelet Transform. Students Conference on Engineering and Systems (SCES), IEEE, pp 1–6

  48. Su K, Kundur D, Hatzinakos D (2002) A novel approach to collusion-resistant video watermarking. In: SPIE Proc. 4675, Security and Watermarking of Multimedia Content IV. p 491–502

  49. Su Q, Niu Y, Zou H, Liu X (2013) A blind dual color images watermarking based on singular value decomposition. Appl Math Comput J 219:8455–8466. http://www.sciencedirect.com/science/article/pii/S009630031300266X

  50. Swanson MD, Zhu B, Tewfik AH (1998) Multiresolution scene-based video watermarking using perceptual models. IEEE J Select Areas Commun 16(4):540–550

    Article  MATH  Google Scholar 

  51. Thomos N, Boulgouris NV, Strintzis MG (2006) Optimized transmission of JPEG2000 streams over wireless channels. IEEE Trans Image Process 5(1):54–67. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4E514CC246AC68A23500B2C669FD6FEA?doi=10.1.1.165.8409&rep=rep1&type=pdf

  52. Vassaux B, Nguyan P, Baudry S, Bas P, Chassery J (2002) Scrambling technique for video object resisting to MPEG-4. In: Proc. Eurasip-IEEE VI PromCom. p 239–244.

  53. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  54. Wolfgang RB, Podilchuk CI, Delp EJ (1999) Perceptual watermarks for digital images and video. IEEE Proc 87(7):1108–1126

    Article  Google Scholar 

  55. Wu X, Sun W (2013) Robust copyright protection scheme for digital images using overlapping DCT and SVD. Appl Soft Comput 13:1170–1182. Available: http://www.sciencedirect.com/science/article/pii/S1568494612004486

  56. Zhang L, Cao Z, Gao C (2000) Application of RS-coded MPSK modulation scenarios to compressed image communication in mobile fading channel. IEEE Proc VTS 3:1198–1203

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank TIFAC-CORE in Automotive Infotronics located at VIT University, Vellore, 632014, India for providing necessary hardware and software facilities to carry out this work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Agilandeeswari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agilandeeswari, L., Ganesan, K. A robust color video watermarking scheme based on hybrid embedding techniques. Multimed Tools Appl 75, 8745–8780 (2016). https://doi.org/10.1007/s11042-015-2789-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2789-9

Keywords

Navigation