Skip to main content
Log in

Local region partition for person re-identification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to the different posture and view angle, the image will appear some objects that do not exist in another image of the same person captured by another camera. The region covered by new items adversely improved the difficulty of person re-identification. Therefore, we named these regions as Damaged Region (DR). To overcome the influence of DR, we propose a new way to extract feature based on the local region that divides both in the horizontal and vertical directions. Before splitting the image, we enlarge it with direction to increase the useful information, potentially reducing the impact of different viewing angles. Then each divided region is a separated part, and the results of the adjacent regions will be compared. As a result the region that gets a higher score is selected as the valid one, and which gets the lower score caused by pose variation and items occlusion will be invalid. Extensive experiments carried out on three person re-identification benchmarks, including VIPeR, PRID2011, CUHK01, clearly show the significant and consistent improvements over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: Computer Vision and Pattern Recognition, pp 3908–3916

  2. Chen D, Yuan Z, Chen B, Zheng N (2016) Similarity learning with spatial constraints for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1268–1277

  3. Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1335–1344

  4. Cui J, Liu Y, Xu Y, Zhao H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43:996–1002

    Article  Google Scholar 

  5. Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. IEEE International Workshop on PETS

  6. Gupta P, Levy RC, Mattoo S, Remer LA, Munchak LA (2016) A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in modis dark target retrieval algorithm. Atmos Meas Tech 9(7):3293–3308

    Article  Google Scholar 

  7. Hirzer M, Beleznai C, Roth PM, Bischof H (2011) Person re-identification by descriptive and discriminative classification. Lect Notes Comput Sci 6688(12):91–102

    Article  Google Scholar 

  8. Hirzer M, Roth PM, Köstinger M, Bischof H (2012) Relaxed Pairwise Learned Metric for Person Re-identification. Springer, Berlin Heidelberg

    Book  MATH  Google Scholar 

  9. Kostinger M, Hirzer M, Wohlhart P, Roth PM (2012) Large scale metric learning from equivalence constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2288–2295

  10. Li W, Wang X (2013) Locally aligned feature transforms across views. Proc IEEE Conf Comput Vis Pattern Recognit 9(4):3594–3601

    MathSciNet  Google Scholar 

  11. Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 152–159

  12. Li Z, Chang S, Liang F, Huang TS, Cao L, Smith JR (2013) Learning locally-adaptive decision functions for person verification Computer Vision and Pattern Recognition, pp 3610–3617

  13. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2197–2206

  14. Liao S, Li SZ (2015) Efficient psd constrained asymmetric metric learning for person re-identification. In: IEEE International Conference on Computer Vision, pp 3685–3693

  15. Lisanti G, Masi I, Bimbo AD (2014) Matching people across camera views using kernel canonical correlation analysis. In: Proceedings of the International Conference on Distributed Smart Cameras. ACM, pp 1–6

  16. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. AAAI Conference on Artificial Intelligence

  17. Liu X, Song M, Tao D, Liu Z (2013) Semi-supervised node splitting for random forest construction. In: Proceedings of CVPR

  18. Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. In: International Conference on Pattern Recognition, pp 898–901

  19. Liu Y, Liang Y, Liu S, Rosenblum DS, Zheng Y (2016) Predicting urban water quality with ubiquitous data

  20. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2016) Action2activity: recognizing complex activities from sensor data. In: International Conference on Artificial Intelligence, pp 1617–1623

  21. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  22. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: Predicting your career path. AAAI Conference on Artificial Intelligence

  23. Liu Y, Zhang X, Cui J, Wu C (2010) Visual analysis of child-adult interactive behaviors in video sequences. In: International Conference on Virtual Systems and Multimedia, pp 26–33

  24. Liu Y, Yu Z, Liang Y, Shuming L, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning, IJCAI

  25. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2016) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools & Applications 1–19

  26. Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical gaussian descriptor for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1363–1372

  27. Ning J, Yang J, Jiang S, Zhang L, Yang MH (2016) Object tracking via dual linear structured svm and explicit feature map. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 4266–4274

  28. Paisitkriangkrai S, Shen C, Hengel AVD (2015) Learning to rank in person re-identification with metric ensembles. Comput Sci 1846–1855

  29. Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3318–3325

  30. Shan Z, Xia Y, Hou P, He J (2016) Fusing incomplete multisensor heterogeneous data to estimate urban traffic. IEEE Multimedia 23:56–63

    Article  Google Scholar 

  31. Shen Y, Lin W, Yan J, Xu M, Wu J, Wang J (2015) Person re-identification with correspondence structure learning. IEEE Int Conf Comput Vis. 3200–3208

  32. Shi Z, Hospedales TM, Xiang T (2015) Transferring a semantic representation for person re-identification and search Computer Vision and Pattern Recognition, pp 4184–4193

  33. Su C, Zhang S, Xing J, Gao W, Tian Q (2016) Deep attributes driven multi-camera person re-identification. European Conference on Computer Vision

  34. Tao D, Jin L, Wang Y, Yuan Y (2013) Person re-identification by regularized smoothing kiss metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1675–1685

  35. Wang F, Zuo W, Lin L, Zhang D, Zhang L (2016) Joint learning of single-image and cross-image representations for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1288–1296

  36. Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE Multimedia Magazine 23(4):80–87

    Article  Google Scholar 

  37. Xia Y, Chen J, Li J, Zhang Y (2016) Geometric discriminative features for aerial image retrieval in social media. Multimedia Systems 22:497–507

    Article  Google Scholar 

  38. Xia Y, Nie L, Zhang L, Yang Y, Hong R, Li X (2016) Weakly supervised multilabel clustering and its applications in computer vision. IEEE Trans Cybern 46:1–13

    Article  Google Scholar 

  39. Xia Y, Zhang L, Liu Z, Nie L, Li X (2016) Weakly-supervised multimodal kernel for categorizing aerial photographs. IEEE Trans Image Process

  40. Xia Y, Zhang L, Tang S (2014) Large-scale aerial image categorization by multi-task discriminative topologies discovery. In: International Workshop on Internet-Scale Multimedia Management, pp 53–58

  41. Xiong F, Gou M, Camps O, Sznaier M (2014) Person Re-Identification using Kernel-Based Metric Learning Methods. Springer International Publishing

  42. Yan Y, Ni B, Song Z, Ma C, Yan Y, Yang X (2016) Person Re-identification via Recurrent Feature Aggregation. Springer International Publishing

  43. Yang Y, Yang J, Yan J, Liao S, Yi D, Li SZ (2014) Salient color names for person re-identification. European Conference on Computer Vision

  44. You J, Wu A, Li X, Zheng WS (2016) Top-push video-based person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1345–1353

  45. Zhang L, Gao Y, Hong C, Feng Y, Zhu J, Cai D (2014) Feature correlation hypergraph: exploiting high-order potentials for multimodal recognition. IEEE T-CYB 44(8):1408

    Google Scholar 

  46. Zhang L, Gao Y, Ji R, Xia Y, Dai Q, Li X (2014) Actively learning human gaze shifting paths for semantics-aware photo cropping. IEEE T-IP 23(5):2235–2245

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang L, Gao Y, Xia Y, Dai Q, Li X (2015) A fine-grained image categorization system by cellet-encoded spatial pyramid modeling. IEEE Trans Ind Electron 62(1):564–571

    Article  Google Scholar 

  48. Zhang L, Gao Y, Xia Y, Lu K (2014) Representative discovery of structure cues for weakly-supervised image segmentation. IEEE T-MM 16(2):470–479

    Google Scholar 

  49. Zhang L, Han Y, Yang Y, Song M, Yan S, Tian Q (2013) Discovering discriminative graphlets for aerial image categories recognition. IEEE T-IP 22(12):5071–5084

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang L, Hong R, Gao Y, Ji R (2016) Image categorization by learning a propagated graphlet path. IEEE T-NNLS 27(3):674–685

    MathSciNet  Google Scholar 

  51. Zhang L, Li X, Nie L, Yan Y, Zimmermann R (2016) Semantic photo retargeting under noisy image labels. ACM TOMCCAP 12(3):37

    Google Scholar 

  52. Zhang L, Li X, Nie L, Yang Y (2016) Weakly supervised human fixations prediction. IEEE T-CYB 46(1):258

    Google Scholar 

  53. Zhang L, Song M, Bian W, Tao D, Liu X, Bu J, Chen C (2011) Feature relationships hypergraph for multimodal recognition. Springer, Berlin Heidelberg

    Book  Google Scholar 

  54. Zhang L, Song M, Liu Z, Liu X, Bu J, Chen C (2013) Probabilistic graphlet cut: Exploiting spatial structure cue for weakly supervised image segmentation. In: Proceedings of CVPR

  55. Zhang L, Song M, Sun L, Liu X (2012) Spatial graphlet matching kernel for recognizing aerial image categories. In: ICPR, pp 2813–2816

  56. Zhang L, Song M, Yang Y, Zhao Q (2014) Weakly supervised photo cropping. IEEE Trans Multimedia 16(1):94–107

    Article  Google Scholar 

  57. Zhang L, Song M, Zhao Q, Liu X, Bu J, Chen C (2013) Probabilistic graphlet transfer for photo cropping. IEEE T-IP 22(2):802–815

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang L, Wang M, Hong R, Yin BC, Li X (2016) Large-scale aerial image categorization using a multitask topological codebook. IEEE T-CYB 46(2):535–545

    Google Scholar 

  59. Zhang L, Yang Y, Gao Y, Yu Y, Wang C, Li X (2014) A probabilistic associative model for segmenting weakly-supervised images. IEEE T-IP 23(9):4150–4159

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang L, Yang Y, Wang M, Hong R, Nie L, Li X (2015) Detecting densely distributed graph patterns for fine-grained image categorization. IEEE T-IP 25 (2):553–565

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang L, Yang Y, Zimmermann R (2015) Fine-grained image categorization by localizing tinyobject parts from unannotated images. In: ACM, pp 107–114

  62. Zhang Y, Li B, Lu H, Irie A, Xiang R (2016) Sample-specific svm learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1278–1287

  63. Zhao R, Ouyang W, Wang X (2014) Learning mid-level filters for person re-identification Computer Vision and Pattern Recognition, pp 144–151

  64. Zhou Z, Song M, Zhang L, Tao D, Bu J, Chen C (2010) kpose: A new representation for action recognition. In: Asian Conference on Computer Vision, pp 436–447

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Grant 61371155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meibin Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Qi, M., Liu, H. et al. Local region partition for person re-identification. Multimed Tools Appl 78, 27067–27083 (2019). https://doi.org/10.1007/s11042-017-4817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4817-4

Keywords

Navigation