Skip to main content
Log in

Secure binary image steganography based on LTP distortion minimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a secure binary image steganography by minimizing the flipping distortion on the statistics of local texture pattern (LTP) and constructing flexible carriers of syndrome-trellis code (STC). Firstly, the change of LTP’s statistic caused by flipping one pixel is employed to measure the flipping distortion of the corresponding pixel, which can well describe the flipping distortion on both statistics and vision. Secondly, we select the non-uniform blocks flexibly and reconstruct them as STC’s carriers, which can access a scalable and nearly continuous capacity upper bound to accommodate to the different secret message lengths. Our experimental results show that, for one specific message length, the security on both statistics and vision is improved significantly when the message length is closed to the capacity upper bound. The comparisons with previous steganographic schemes demonstrate the superiority of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28 (12):2037–2041

    Article  MATH  Google Scholar 

  2. Cao H, Kot A (2013) On establishing edge adaptive grid for bi-level image data hiding. IEEE Trans Inf Forensics Secur 8(9):1508–1518

    Article  Google Scholar 

  3. Cao G, Zhao Y, Ni R, Li X (2014) Contrast enhancement-based forensics in digital images. IEEE Trans Inf Forensics Secur 9(3):515–525

    Article  Google Scholar 

  4. Chakraborty S, Jalal AS, Bhatnagar C (2017) Lsb based non blind predictive edge adaptive image steganography. Multimed Tools Appl 76(6):7973–7987

    Article  Google Scholar 

  5. Chen J, Lu W, Yeung Y, Xue Y, Liu X, Lin C, Zhang Y (2018) Binary image steganalysis based on distortion level co-occurrence matrix. Comput Mater Continua 55(2):201–211

    Google Scholar 

  6. Cheng J, Kot AC (2004) Objective distortion measure for binary images. In: IEEE region 10 conference TENCON 2004, pp 355–358

  7. Cheng J, Kot AC (2007) Objective distortion measure for binary text image based on edge line segment similarity. IEEE Trans Image Process 16(6):1691–1695

    Article  MathSciNet  Google Scholar 

  8. Chiew KL, Pieprzyk J (2010) Estimating hidden message length in binary image embedded by using boundary pixels steganography. In: International conference on availability, reliability and security. IEEE Computer Society, pp 683–688

  9. Chiew KL, Pieprzyk J (2010) Binary image steganographic techniques classification based on multi-class steganalysis. In: Information security, practice and experience. Springer, pp 341–358

  10. Chiew KL, Pieprzyk J (2010) Blind steganalysis: a countermeasure for binary image steganography. In: International conference on availability, reliability and security. IEEE Computer Society, pp 653–658

  11. Feng B, Lu W, Sun W (2013) High capacity data hiding scheme for binary images based on minimizing flipping distortion. In: International workshop on digital watermarking. Springer, Berlin, pp 514–528

  12. Feng B, Lu W, Dai L, Sun W (2014) Steganography based on high-dimensional reference table. In: International workshop on digital watermarking. Springer, pp 574–587

  13. Feng B, Lu W, Sun W (2015) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inf Forensics Secur 10(2):243–255

    Article  Google Scholar 

  14. Feng B, Lu W, Sun W (2015) Binary image steganalysis based on pixel mesh markov transition matrix. J Vis Commun Image Represent 26:284–295

    Article  Google Scholar 

  15. Feng B, Lu W, Sun W (2015) Novel steganographic method based on generalized k-distance n-dimensional pixel matching. Multimed Tools Appl 74(21):9623–9646. https://doi.org/10.1007/s11042-014-2140-x

    Article  Google Scholar 

  16. Feng B, Lu W, Sun W, Liang Z, Liu J (2015) Blind watermarking based on adaptive lattice quantization index modulation. In: International workshop on digital watermarking. Springer, pp 239–249

  17. Feng B, Lu W, Sun W, Huang J, Shi Y-Q (2016) Robust image watermarking based on tucker decomposition and adaptive-lattice quantization index modulation. Signal Process Image Commun 41:1–14

    Article  Google Scholar 

  18. Feng B, Weng J, Lu W (2017) Improved algorithms for robust histogram shape-based image watermarking. In: Kraetzer C, Shi Y-Q, Dittmann J, Kim HJ (eds) Digital forensics and watermarking. Springer International Publishing, Cham, pp 275–289

  19. Feng B, Weng J, Wei Z, Pei B (2017) Multiple watermarking using multilevel quantization index modulation. Lect Notes Comput Sci 10082:312–326

    Article  Google Scholar 

  20. Feng B, Weng J, Lu W, Pei B (2017) Steganalysis of content-adaptive binary image data hiding. J Vis Commun Image Represent 46:119–127

    Article  Google Scholar 

  21. Filler T, Judas J, Fridrich J (2011) Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans Inf Forensics Secur 6(3):920–935

    Article  Google Scholar 

  22. Fridrich J, Goljan M, Lisonek P, Soukal D (2005) Writing on wet paper. IEEE Trans Signal Process 53(10):3923–3935

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo M, Zhang H (2010) High capacity data hiding for binary image authentication. In: International conference on pattern recognition. IEEE, pp 1441–1444

  24. Guo Y, Au OC, Wang R, Fang L, Cao X (2018) Halftone image watermarking by content aware double-sided embedding error diffusion. IEEE Trans Image Process 27(7):3387–3402

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6):765–781

    Article  Google Scholar 

  26. Kim Y, Duric Z, Richards D (2007) Modified matrix encoding technique for minimal distortion steganography. In: International workshop on information hiding. Springer, pp 314–327

  27. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  28. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  29. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensics Secur 8(7):1091–1100

    Article  Google Scholar 

  30. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76 (20):20739–20753

    Article  Google Scholar 

  31. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  32. Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl, pp 1–18

  33. Lin X, Feng B, Lu W, Sun W (2014) Content-adaptive residual for steganalysis. In: International workshop on digital watermarking. Springer, pp 389–398

  34. Lu H, Kot AC, Shi YQ (2004) Distance-reciprocal distortion measure for binary document images. IEEE Signal Process Lett 11(2):228–231

    Article  Google Scholar 

  35. Liu X, Lu W, Liu W, Luo S, Liang Y, Li M (2019) Image deblocking detection based on a convolutional neural network. IEEE Access, pp 1-?1. https://doi.org/10.1109/ACCESS.2019.2901020

  36. Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl 75(21):13557–13583

    Article  Google Scholar 

  37. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circuits Syst Video Technol

  38. Mei Q, Wong EK, Memon N (2001) Data hiding in binary text documents. In: Security and watermarking of multimedia contents III, vol 4314. SPIE, pp 369–375

  39. Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. TIIS 9(5):1938–1962

    Google Scholar 

  40. Muhammad K, Sajjad M, Baik SW (2016) Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. J Med Syst 40(5):114

    Article  Google Scholar 

  41. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic lsb substitution method (m-lsb-sm) using multi-level encryption and achromatic component of an image. Multimed Tools Appl 75(22):14867–14893

    Article  Google Scholar 

  42. Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2017) Cisska-lsb: color image steganography using stego key-directed adaptive lsb substitution method. Multimed Tools Appl 76(6):8597–8626

    Article  Google Scholar 

  43. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2018) Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Futur Gener Comput Syst 86:951–960

    Article  Google Scholar 

  44. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  45. Ou B, Li X, Zhao Y, Ni R, Shi Y-Q (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  46. Patsakis C, Aroukatos N (2011) A dct steganographic classifier based on compressive sensing. In: Intelligent information hiding and multimedia signal processing, pp 169–172

  47. Qian Z, Zhang X, Wang S (2014) Reversible data hiding in encrypted jpeg bitstream. IEEE Trans Multimedia 16(5):1486–1491

    Article  Google Scholar 

  48. Shi YQ, Sutthiwan P, Chen L (2013) Textural features for steganalysis. In: International workshop on information hiding. Springer, pp 63–77

  49. Su W, Ni J, Li X, Shi Y-Q (2018) A new distortion function design for jpeg steganography using the generalized uniform embedding strategy. IEEE Trans Circuits Syst Video Technol 28(12):3545–3549

    Article  Google Scholar 

  50. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Elsevier Pte Ltd

  51. Tuceryan M, Jain AK (1993) Texture analysis. Handbook of Pattern Recognition and Computer Vision 2:207–248

    Google Scholar 

  52. Tseng Y-C, Chen Y-Y, Pan H-K (2002) A secure data hiding scheme for binary images. IEEE Trans Commun 50(8):1227–1231

    Article  Google Scholar 

  53. Wang J, Ni J, Zhang X, Shi Y-Q (2017) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Transactions on Cybernetics 47(2):315–326

    Google Scholar 

  54. Weng S, Zhao Y, Pan J-S, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724

    Article  Google Scholar 

  55. Wu M, Liu B (2004) Data hiding in binary image for authentication and annotation. IEEE Trans Multimedia 6(4):528–538

    Article  Google Scholar 

  56. Xue Y, Liu W, Lu W, Yeung Y, Liu X, Liu H (2018) Efficient halftone image steganography based on dispersion degree optimization. J Real-Time Image Proc, pp 1–9

  57. Yang H, Kot AC (2007) Pattern-based data hiding for binary image authentication by connectivity-preserving. IEEE Trans Multimedia 9(3):475–486

    Article  Google Scholar 

  58. Yang H, Kot AC, Rahardja S (2008) Orthogonal data embedding for binary images in morphological transform domain-a high-capacity approach. IEEE Trans Multimedia 10(3):339–351

    Article  Google Scholar 

  59. Yeung Y, Lu W, Xue Y, Huang J, Shi Y (2019) Secure binary image steganography with distortion measurement based on prediction. IEEE Trans Circuits Syst Video Technol, pp 1–1. https://doi.org/10.1109/TCSVT.2019.2903432

  60. Yuan Y, Lu W, Feng B, Weng J (2017) Steganalysis with cnn using multi-channels filtered residuals. In: Sun X, Chao H-C, You X, Bertino E (eds) Cloud computing and security. Springer International Publishing, Cham, pp 110–120

  61. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Article  Google Scholar 

  62. Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-embedding. IEEE Trans Image Process 20(2):485–495

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhang Y, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Article  Google Scholar 

  64. Zhang J, Lu W, Yin X, Liu W, Yeung Y (2019) Binary image steganography based on joint distortion measurement. J Vis Commun Image Represent 58:600–605

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Key Areas R&D Program of Guangdong (No. 2019B010136002), the Key Scientific Research Program of Guangzhou (No. 201804020068), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), Shanghai Minsheng Science and Technology Support Program (17DZ1205500), Shanghai Sailing Program (17YF1420000), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, Y., Lu, W., Xue, Y. et al. Secure binary image steganography based on LTP distortion minimization. Multimed Tools Appl 78, 25079–25100 (2019). https://doi.org/10.1007/s11042-019-7731-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7731-0

Keywords

Navigation