Skip to main content
Log in

An improved statistical approach for moving object detection in thermal video frames

  • 1212: Deep Learning Techniques for Infrared Image/Video Understanding
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In a video surveillance system, background modeling is assumed to be a fundamental technique for moving object detection. The surveillance system based on thermal video overcomes many challenges, such as background variations, varying light intensity, external illumination source, and so on. This paper presents a new method for background modeling and background subtraction. The method utilizes the combined approach of Fisher's Linear Discriminant and Relative Entropy for pixel based classification and detection of moving objects in thermal video frames. The experimental results show the higher average value of various performance indicators like Accuracy, ROC, and F-measure. In contrast, the percentage of false classification and total error is minimum and also has lesser execution time. The method outperforms when compared with the other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akula A et al (2014) Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences. Infrared Phys Technol 63:103–109. https://doi.org/10.1016/j.infrared.2013.12.012

    Article  Google Scholar 

  2. Babaee M, Dinh DT, Rigoll G (2018) A deep convolutional neural network for video sequence background subtraction. Pattern Recogn 76:635–649

    Article  Google Scholar 

  3. Barnich O, Van Droogenbroeck M (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724. https://doi.org/10.1109/TIP.2010.2101613

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouwmans T, Porikli F, Horferlin B, Vacavant A (2014) Background modeling and foreground detection for video surveillance: traditional and recent approaches. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  5. Chu KY, et al (2013) Real-time privacy-preserving moving object detection in the cloud. In MM 2013 - proceedings of the 2013 ACM multimedia conference, 2013, pp 597–600, https://doi.org/10.1145/2502081.2502157.

  6. Cui Y, Zeng Z, Fu B, Cui W (2012) Moving object detection based on the histograms of oriented gradients and cloud model. Res J Appl Sci Eng Technol 4(16):2639–2644

    Google Scholar 

  7. Do SC, Huang BH (2014) Radial basis function based neural network for motion detection in dynamic scenes. IEEE Trans Cybern 44:114–125

    Article  Google Scholar 

  8. Dong X et al (2014) A novel infrared small moving target detection method based on tracking interest points under complicated background. Infrared Phys Technol 65:36–42. https://doi.org/10.1016/j.infrared.2014.03.007

    Article  Google Scholar 

  9. Friedman N, Russell S (1997) Image segmentation in video sequences: A probabilistic approach. In Proc. of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI)

  10. Garcia-Garcia B et al (2020) Background subtraction in real applications: challenges, current models and future directions. Comput Sci Rev 35:100204. https://doi.org/10.1016/j.cosrev.2019.100204

    Article  MathSciNet  Google Scholar 

  11. Haines TSF, Xiang T (2014) Background subtraction with a dirichlet process mixture model. IEEE Trans Pattern Anal Mach Intell 36(4):670–683

    Article  Google Scholar 

  12. Haque M, Murshed M, Paul M (2008) On stable dynamic background generation technique using Gaussian mixture models for robust object detection. In 5th international conference on advanced video and signal based surveillance, IEEE pp 41–48.

  13. Hao J et al (2013) Spatio-temporal traffic scene modeling for object motion detection. IEEE Trans Intell Transp Syst 14(1):295–302. https://doi.org/10.1109/TITS.2012.2212432

    Article  Google Scholar 

  14. Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In Proceedings of IEEE conference on computer vision and pattern recognition workshops, pp 38–43.

  15. Husain AA et al (2020) Vehicle detection in intelligent transport system under a hazy environment: a survey. IET Image Process 14:1–10. https://doi.org/10.1049/iet-ipr.2018.5351

    Article  Google Scholar 

  16. Jung CR (2009) Efficient background subtraction and shadow removal for monochromatic video sequences. IEEE Trans Multimedia 11:3

    Article  Google Scholar 

  17. Kijanka P, Urban MW (2021) Dispersion curve calculation in viscoelastic tissue-mimicking materials using non-parametric, parametric, and high-resolution methods. Ultrasonics 109:106257. https://doi.org/10.1016/j.ultras.2020.106257

    Article  Google Scholar 

  18. Kim K et al (2005) Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3):172–185. https://doi.org/10.1016/j.rti.2004.12.004

    Article  Google Scholar 

  19. Kim JY, Ha JE (2020) Foreground objects detection using a fully convolutional network with a background model image and multiple original images. IEEE Access 8:159864–159878

    Article  Google Scholar 

  20. Lee DS (2005) Effective Gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832. https://doi.org/10.1109/TPAMI.2005.102

    Article  Google Scholar 

  21. Mandal M, Dhar V, Mishra A, Vipparthi SK, Abdel-Mottaleb M (2021) 3DCD: scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos. IEEE Trans Image Process 30:546–558. https://doi.org/10.1109/TIP.2020.3037472

    Article  Google Scholar 

  22. Prativadibhayankaram S, Luong H, Le T, Kaup A (2018) Compressive online video background–foreground separation using multiple prior information and optical flow. MDPI J Imaging 4:90

    Article  Google Scholar 

  23. Qiu S, Luo JS, Yan S (2019) A moving target extraction algorithm based on the fusion of infrared and visible images. Infrared Phys Technol Technol 98:285–291

    Article  Google Scholar 

  24. Rai M et al (2018) Thermal imaging system and its real time applications: a survey. J Eng Technol 6(2):290–303

    Google Scholar 

  25. Rai M, Yadav RK (2016) A novel method for detection and extraction of human face for video surveillance applications. Int J Signal Imaging Syst Eng 9(3):165–173. https://doi.org/10.1504/IJSISE.2016.076226

    Article  Google Scholar 

  26. Saboo S, Singha J (2021) Vision based two-level hand tracking system for dynamic hand gestures in indoor environment. Multimed Tools Appl 80:20579–20598. https://doi.org/10.1007/s11042-021-10669-7

    Article  Google Scholar 

  27. Sharma L et al (2016) Fisher’s linear discriminant ratio based threshold for moving human detection in thermal video. Infrared Phys Technol 78:118–128. https://doi.org/10.1016/j.infrared.2016.07.012

    Article  Google Scholar 

  28. Sharma L, Lohan N (2019) Performance analysis of moving object detection using BGS techniques in visual surveillance. Int J Spatio-Temporal Data Sci 1(1):22. https://doi.org/10.1504/ijstds.2019.10018845

    Article  Google Scholar 

  29. Shi DF, Yin KX, Huang J, Yuan KE, Zhu WY, Xie CB, Liu D, Wang YJ (2019) Fast tracking of moving objects using single-pixel imaging. Optical Commun 440:155–162

    Article  Google Scholar 

  30. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In IEEE computer society conference on computer vision and pattern recognition, pp 246–252

  31. Stauffer C, Eric W, Grimson L (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757. https://doi.org/10.1109/34.868677

    Article  Google Scholar 

  32. St-Charles PL et al (2015) SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24:359–373. https://doi.org/10.1109/TIP.2014.2378053

    Article  MathSciNet  MATH  Google Scholar 

  33. Supreeth HSG, Patil CM (2018) Efficient multiple moving object detection and tracking using combined background subtraction and clustering. Signal Image Video Process 22:1097–1105

    Article  Google Scholar 

  34. Tattersall GJ, Danner RM, Chaves JA, Levesque DL (2020) Activity analysis of thermal imaging videos using a difference imaging approach. J Therm Biol 91:102611

    Article  Google Scholar 

  35. Teju V, Bhavana D (2020) An efficient object detection using OFSA for thermal imaging. Int J Electr Eng Educ. https://doi.org/10.1177/0020720920944434

    Article  Google Scholar 

  36. Tezcan MO, Ishwar P, Konrad J (2021) BSUV-Net 2.0: spatio-temporal data augmentations for video-agnostic supervised background subtraction. IEEE Access 9:53849–53860. https://doi.org/10.1109/ACCESS.2021.3071163

    Article  Google Scholar 

  37. Weblink: < www.changedetection.net >

  38. Weblink: <www.vcipl.okstate.edu/otcbvs/bench/>

  39. Wren CR, Azarbayejani A, Darrell T, Pentland A (1997) Pfinder: real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  40. Xu Y et al (2020) Coarse-to-fine sample-based background subtraction for moving object detection. Optik 207:164195. https://doi.org/10.1016/j.ijleo.2020.164195

    Article  Google Scholar 

  41. Yadav DK, et al (2003) Moving object detection in real-time visual surveillance using background subtraction technique. In 2014 14th international conference on hybrid intelligent systems, HIS 2014, no 1, pp 79–84. IEEE https://doi.org/10.1109/HIS.2014.7086176

  42. Yadav DK, Singh K (2016) A combined approach of Kullback-Leibler divergence and background subtraction for moving object detection in thermal video. Infrared Phys Technol 76:21–31. https://doi.org/10.1016/j.infrared.2015.12.027

    Article  Google Scholar 

  43. Yadav DK, Singh K (2016) Moving object detection for visual surveillance using quasi-euclidian distance. In Proceedings of the second international conference on computer and communication technologies. Springer, New Delhi

  44. Zhou H et al (2013) A novel background subtraction method based on color invariants. Comput Vision Image Understanding 117:1589–1597. https://doi.org/10.1016/j.cviu.2013.07.008

    Article  Google Scholar 

  45. Zhou X et al (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35:597–610. https://doi.org/10.1109/TPAMI.2012.132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, M., Sharma, R., Satapathy, S.C. et al. An improved statistical approach for moving object detection in thermal video frames. Multimed Tools Appl 81, 9289–9311 (2022). https://doi.org/10.1007/s11042-021-11548-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11548-x

Keywords

Navigation