Skip to main content
Log in

Mechanical properties of Epon 826/DEA epoxy

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Polymers are becoming increasingly used in aerospace structural applications, where they experience complex, non-static loads. Correspondingly, the mechanical properties at high strain rates are of increasing importance in these applications. This paper investigates the compressive properties of Epon 826 epoxy resin cured with diethynolamine (DEA) across strain rates from 10−3 to 104 s−1. Specimens were tested using an Instron mechanical testing machine for static loading, traditional split Hopkinson pressure bars (SHPBs) for high strain rates, and a miniaturized SHPB for ultra-high strain rates. Additionally, the material was tested using dynamic mechanical analysis to determine the effects of time and temperature equivalences on the strain rate behavior of the samples. The experimental data is used to fit the Mulliken-Boyce model, modified for one-dimension, which is able to capture the compressive mechanical properties over a range of strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alifanov, O.M.: Inverse Heat Transfer Problems. Springer, Berlin (1994)

    MATH  Google Scholar 

  • Anand, L., Ames, N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22(6), 1123–1170 (2006)

    Article  MATH  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9(6), 697–720 (1993)

    Article  Google Scholar 

  • Bar-Shalom, Y., Li, X.R., et al.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)

    Google Scholar 

  • Bauwens-Crowet, C.: The compression yield behaviour of PMMA over a wide range of temperature and strain-rates. J. Mater. Sci. 8, 968–979 (1973)

    Article  Google Scholar 

  • Bauwens-Crowet, C., Bauwens, J.C., et al.: The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci. 7, 176–183 (1972)

    Article  Google Scholar 

  • Bauwens, J.C.: Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. J. Mater. Sci. 7, 577–584 (1972)

    Article  Google Scholar 

  • Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  Google Scholar 

  • Boyce, M.C., Kear, K., et al.: Deformation of thermoplastic vulcanizates. J. Mech. Phys. Solids 49(5), 1073–1098 (2001)

    Article  MATH  Google Scholar 

  • Boyce, M.C., Parks, D.M., et al.: Large inelastic deformation of glassy polymers, part I: rate dependent constitutive model. Mech. Mater. 7(1), 15–33 (1988)

    Article  Google Scholar 

  • Boyce, M.C., Socrate, S., et al.: Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer 41(6), 2183–2201 (2000)

    Article  Google Scholar 

  • Briscoe, B.J., Hutchings, I.M.: Impact yielding of high density polyethylene. Polymer 17, 1099–1102 (1976)

    Article  Google Scholar 

  • Briscoe, B.J., Nosker, R.W.: The influence of interfacial friction on the deformation of high density polyethylene in a split Hopkinson pressure bar. Wear 95, 241–262 (1984)

    Article  Google Scholar 

  • Briscoe, B.J., Nosker, R.W.: The flow stress of high density polyethylene at high rates of strain. Polym. Commun. 26, 307–308 (1985)

    Google Scholar 

  • Brown, E.N., Willms, R.B., et al.: Influence of molecular conformation on the constitutive response of polyethylene: a comparison of HDPE, UHMWPE, and PEX. Exp. Mech. 46 (2007)

  • Buckley, C.P., Dooling, P.J., et al.: Deformation of thermosetting resins at impact rates of strain, part 2: constitutive model with rejuvenation. J. Mech. Phys. Solids 52(10), 2355–2377 (2004)

    Article  MATH  Google Scholar 

  • Buckley, C.P., Harding, J., et al.: Deformation of thermosetting resins at impact rates of strain, part I: Experimental study. J. Mech. Phys. Solids 49(7), 1517–1538 (2001)

    Article  MATH  Google Scholar 

  • Chen, W., Lu, F., et al.: Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym. Test. 21(2), 113–121 (2002)

    Article  Google Scholar 

  • Chen, W., Zhang, X.: Dynamic response of Epon 828/T-403 under multiaxial loading at various temperatures. J. Eng. Mater. Technol. Trans. ASME 119(3), 305–308 (1997)

    Article  Google Scholar 

  • Chen, W., Zhou, B.: Constitutive behavior of Epon 828/T-403 at various strain rates. Mech. Time-Depend. Mater. 2(2), 103–111 (1998)

    Article  Google Scholar 

  • Chin, W., Hwu, J., et al.: Curing behavior and thermal properties of Epon 828 resin cured with diimide-diacid and phthalic anyhydride. Polymer 39(20), 4923–4928 (1998)

    Article  Google Scholar 

  • Chou, S.C., Robertson, K.D., et al.: The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics. Exp. Mech. 13, 422–432 (1973)

    Article  Google Scholar 

  • Enns, J.B., Gillham, J.K.: Effect of the extent of cure on the modulus, glass transition, water absorption, and density of an amine-cured epoxy. J. Appl. Polym. Sci. 28(9), 2831–2846 (1983)

    Article  Google Scholar 

  • Foreman, J.P., Porter, D., et al.: Thermodynamic and mechanical properties of amine-cured epoxy resins using group interaction modeling. J. Mater. Sci. 40, 6631–6638 (2006)

    Article  Google Scholar 

  • Garg, M., Mulliken, A.D., et al.: Temperature rise in polymeric materials during high rate deformation. J. Appl. Mech. 75, 011009-1–011009-8 (2008)

    Article  Google Scholar 

  • Gilat, A., Goldberg, R.K., et al.: Strain rate sensitivity of epoxy resin in tensile and shear loading. J. Aerospace Eng. 20(2), 75–89 (2007)

    Article  Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Boston (1989)

    MATH  Google Scholar 

  • Gorham, D.A.: Measurement of stress-strain properties of strong metals at very high rates of strain. Inst. Phys. Conf. Ser. 47, 16–24 (1979)

    Google Scholar 

  • Gorham, D.A., Pope, P.H., et al.: An improved method for compressive stress strain measurement at very high strain rates. Proc. R. Soc. Lond. 438, 153–170 (1992)

    Article  MATH  Google Scholar 

  • Gray III, G.T.: Classic split-Hopkinson pressure bar testing. In: Kuhn, H., Medlin, D. (eds.) Mechanical Testing and Evaluation. ASM Handbook, vol. 8, pp. 462–476. ASM International, Materials Park (2002)

    Google Scholar 

  • Gray III, G.T., Blumenthal, W.R.: Split-Hopkinson pressure bar testing of soft materials. In: Kuhn, H., Medlin, D. (eds.) Mechanical Testing and Evaluation. ASM Handbook, vol. 8, pp. 488–496. ASM International, Materials Park (2000)

    Google Scholar 

  • Hasan, O.A., Boyce, M.C.: A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers. Polym. Eng. Sci. 35(4), 331–344 (1995)

    Article  Google Scholar 

  • Hu, Y., Xia, Z., et al.: Deformation behavior of an epoxy resin subject to multiaxial loadings, part I: experimental investigations. Polym. Eng. Sci. 43(3), 721–733 (2003)

    Article  Google Scholar 

  • Jia, D., Ramesh, K.T.: A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp. Mech. 44, 445–454 (2004)

    Article  Google Scholar 

  • Katz, D., Smooha, Y., et al.: Dynamic properties of an unfilled and filled epoxy resin subjected to extensional creep. J. Mater. Sci. 15(5), 1167–1174 (1980)

    Article  Google Scholar 

  • Khan, M.Z.S., Simpson, G., et al.: A comparison of the mechanical properties in compression of two resin systems. Mater. Lett. 52(3), 173–179 (2002)

    Article  Google Scholar 

  • Kozey, V., Kumar, S.: Compressive behavior of epoxy resins. In: International SAMPE Technical Conference (1994)

  • Kukureka, S.N., Hutchings, I.M.: Measurement of the mechanical properties of polymers at high strain rates by Taylor impact. In: Blazynski, T.Z. (ed.) Proc. 7th Int. Conf. on High Energy Rate Fabrication, pp. 29–38. University of Leeds, Leeds (1981)

    Google Scholar 

  • Lu, H., Tan, G., et al.: Modeling of constitutive behavior for Epon 828/T-403 at high strain rates. Mech. Time-Depend. Mater. 5(2), 119–130 (2001)

    Article  Google Scholar 

  • Mendenhall, W.: Introduction to Probability and Statistics, pp. 55–88. Duxbury, Belmont (1971)

    Google Scholar 

  • Mentha, S.N., Pope, P.H., et al.: Progress in metal testing with a 3 mm pressure bar. Inst. Phys. Conf. Ser. 70, 175–176 (1984)

    Google Scholar 

  • Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  • Miwa, M., Takeno, A., et al.: Strain rate and temperature dependence of shear properties of epoxy resin. J. Mater. Sci. 30(7), 1760–1765 (1995)

    Article  Google Scholar 

  • Mulliken, A.D.: Low to high strain rate deformation of amorphous polymers: experiments and modeling. MSc thesis, Department of Mechanical Engineering. Cambridge, Massachusetts Institute of Technology (2004)

  • Mulliken, A.D.: Mechanics of amorphous polymers and polymer nanocomposites during high rate deformation. PhD thesis, Mechanical Engineering. Cambridge, Massachusetts Institute of Technology (2006)

  • Mulliken, A.D., Boyce, M.C.: Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 43(5), 1331–1356 (2006)

    Article  MATH  Google Scholar 

  • Mulliken, A.D., Soong, S.Y., et al.: High-rate thermomechanical behavior of poly(vinyl chloride) and plasticized poly(vinyl chloride). J. Phys. IV 134, 217–223 (2006)

    Article  Google Scholar 

  • Rietsch, F., Bouette, B.: The compression yield behaviour of PC over a wide range of strain rates and temperatures. Eur. Polym. J. 26, 1071–1075 (1990)

    Article  Google Scholar 

  • Siviour, C.R., Walley, S.M., et al.: The high strain rate compressive behavior of polycarbonate and polyvinylidene fluoride. Polymer 46, 12546–12555 (2005)

    Article  Google Scholar 

  • Siviour, C.R., Walley, S.M., et al.: Mechanical behaviour of polymers at high rates of strain. J. Phys. IV 134, 949–955 (2006)

    Article  Google Scholar 

  • Tasker, D.G., Dick, R.D., et al.: Mechanical properties of explosives under high deformation loading conditions. In: Shock Compression of Condensed Matter. American Institute of Physics, New York (1997)

    Google Scholar 

  • Tasker, D.G., Dick, R.D., et al.: Mechanical properties of explosives under high deformation loading conditions. In: Shock Compression of Condensed Matter. American Institute of Physics, New York (1998)

    Google Scholar 

  • Trautmann, A., Siviour, C.R., et al.: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. Int. J. Impact Eng. 31, 523–544 (2005)

    Article  Google Scholar 

  • Truong, V.T.: Effect of displacement rate and curing conditions on the fracture behaviour of crosslinked epoxy systems. Polymer 31(9), 1669–1677 (1990)

    Article  Google Scholar 

  • Walley, S.M., Field, J.E.: Strain rate sensitivity of polymers in compression from low to high rates. DYMAT J. 1(3), 211–227 (1994)

    Google Scholar 

  • Williams, J.G.: The beta relaxation in epoxy resin-based networks. J. Appl. Polym. Sci. 23, 3433–3444 (1979)

    Article  Google Scholar 

  • Xia, Z., Hu, Y., et al.: Deformation behavior of an epoxy resin subject to multiaxial loadings, part II: constitutive modeling and predictions. Polym. Eng. Sci. 43(3), 734–748 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, J.L., Foley, J.R. & Siviour, C.R. Mechanical properties of Epon 826/DEA epoxy. Mech Time-Depend Mater 12, 249–272 (2008). https://doi.org/10.1007/s11043-008-9061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-008-9061-x

Keywords

Navigation