Skip to main content
Log in

On the measurements of viscoelastic functions of a sphere by nanoindentation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Nanoindentation using such instruments as instrumented nanoindenter and scanning probe microscope is effective for measurements of viscoelastic functions of a sphere in micron or sub-micron scale. In this paper, we provide methods for nanoindentation measurements of linearly viscoelastic functions in both time- and frequency-domains for a viscoelastic sphere under small deformations. In the time-domain, both relaxation and creep functions are determined from three types of loading histories, namely constant-rate loading, ramp loading, and step loading. In the frequency-domain, methods are given for the calculation of complex modulus, or complex compliance under a small amplitude of sinusoidal load superimposed on a carrier load. The effects of the radius of the viscoelastic sphere relative to the indenter tip radius, as well as the deformation of the sphere induced by contact with the flat substrate supporting the sphere are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arenz, R.J.: Nonlinear shear behavior of Poly(vinyl acetate) material. Mech. Time-Depend. Mater. 2, 287–305 (1999)

    Article  Google Scholar 

  • Burnham, N.A., Baker, S.P., Pollock, H.M.: Model for mechanical properties nanoprobes. J. Mater. Res. 15, 2006–2014 (2000)

    Google Scholar 

  • Cao, Y.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mech. Time-Depend. Mater. 11, 159–172 (2007)

    Article  Google Scholar 

  • Cheng, Y.-T., Cheng, C.-M.: General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, 111914 (2005)

    Article  Google Scholar 

  • Cheng, Y.-T., Cheng, C.-M., Ni, W.: Methods of obtaining instantaneous modulus of viscoelastic solids using displacement-controlled instrumented indentation with axisymmetric indenters of arbitrary smooth profiles. Mater. Sci. Eng. A 423, 2–7 (2006a)

    Article  Google Scholar 

  • Cheng, Y.-T., Ni, W., Cheng, C.-M.: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys. Rev. Lett. 97, 075506 (2006b)

    Article  Google Scholar 

  • Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci. B Polym. Phys. 38, 10–22 (2000)

    Article  Google Scholar 

  • Daphalapurkar, N.P., Dai, C., Gan, R.Z., Lu, H.: Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J. Mech. Behav. Mater. 2, 82–92 (2009)

    Article  Google Scholar 

  • Darling, E.M., Zauscher, S., Guilak, F.: Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14, 571–579 (2006)

    Article  Google Scholar 

  • Emri, I., Pavsek, V.: On the influence of moisture on the mechanical behavior of polymers. In: Proceedings of VII International Congress on Experimental Mechanics, vol. II, pp. 1429–1437. Society for Experimental Mechanics, Bethel (1992)

    Google Scholar 

  • Francius, G., Hemmerle, J., Ball, V., Lavalle, P., et al.: Stiffening of soft polyelectrolyte architectures by multilayer capping evidenced by viscoelastic analysis of AFM indentation measurements. J. Phys. Chem. C 111, 8299–8306 (2007)

    Article  Google Scholar 

  • Giannakopoulos, A.E.: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409–416 (2000)

    Article  MATH  Google Scholar 

  • Hertz, H.: Uber die beruhrung fester elastischer korper. J. Reine Angew. Math. 92, 156–171 (1881)

    Google Scholar 

  • Huang, G., Lu, H.: Measurement of two independent viscoelastic functions by nanoindentation. Exp. Mech. 47, 87–98 (2007)

    Article  Google Scholar 

  • Huang, G., Wang, B., Lu, H.: Measurement of viscoelastic function of polymers in the frequency-domain using nanoindentation. Mech. Time-Depend. Mater. 8, 345–364 (2004)

    Article  Google Scholar 

  • Huang, G., Daphalapurkar, N., Gan, R.Z., Lu, H.: A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J. Biomech. Eng. 130, 014501 (2008)

    Article  Google Scholar 

  • Keddie, J.L.: Film formation of latex. Mater. Sci. Eng. R 21, 101–170 (1997)

    Article  Google Scholar 

  • Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time-Depend. Mater. 11, 199–216 (2007)

    Article  Google Scholar 

  • Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    MATH  MathSciNet  Google Scholar 

  • Lee, S., Knauss, W.G.: A note on the determination of relaxation and creep data from ramp tests. Mech. Time-Depend. Mater. 4, 1–7 (2000)

    Article  Google Scholar 

  • Loubet, J.L., Oliver, W.C., Lucas, B.N.: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195–1198 (2000)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  • Lu, H., Huang, G., Wang, B., Mamedov, A., Gupta, S.: Characterization of the linear viscoelastic behavior of single wall carbon nanotube/polyelectrolyte multilayer nanocomposite film using nanoindentation. Thin Solid Films 500, 197–202 (2006)

    Article  Google Scholar 

  • Lu, H., Huang, G., Wang, F.: Measurements of viscoelastic properties of polymers using flat punch indenter. In: Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, vol. 2, pp. 697–704 (2007)

  • Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., Kas, J.: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000)

    Article  Google Scholar 

  • Mattice, J.M., Lau, A.G., Oyen, M.L., Kent, R.W.: Spherical indentation load-relaxation of soft biological tissues. J. Mater. Res. 21(8), 2003–2010 (2006)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  • Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20(8), 2094–2100 (2005)

    Article  Google Scholar 

  • Oyen, M.L., Cook, R.F.: Load-displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18(1), 139–150 (2003)

    Article  Google Scholar 

  • Sadr, A., Shimada, Y., Lu, H., Tagami, J.: The viscoelastic behavior of dental adhesives: a nanoindentation study. Dent. Mater. 25, 13–19 (2009)

    Article  Google Scholar 

  • Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Tan, S., Sherman, R.L. Jr., Ford, W.T.: Nanoscale compression of polymer microsphere by atomic force microscopy. Langmuir 20, 7015–7020 (2004)

    Article  Google Scholar 

  • Tatara, Y.: On compression of rubber elastic sphere over a large range of displacements–Part 1: Theoretical study. J. Eng. Mater. Technol. 113, 285–291 (1991)

    Article  Google Scholar 

  • Ting, T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966)

    MATH  Google Scholar 

  • VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F., Meyers, G.F.: Nanoindentation of polymers: an overview. Macromol. Symp. 167, 15–43 (2001)

    Article  Google Scholar 

  • VanLandingham, M.R., Chang, N.K., Drzal, P.L., White, C.C., Chang, S.H.: Viscoelastic characterization of polymers using instrumented indentation-1 quasi-static testing. J. Polym. Sci. B Polym. Phys. 43, 1794–1811 (2005)

    Article  Google Scholar 

  • Zhao, J., Knauss, W.G., Ravichandran, G.: Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea. Mech. Time-Depend. Mater. 11, 289–308 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Lu, H. On the measurements of viscoelastic functions of a sphere by nanoindentation. Mech Time-Depend Mater 14, 1–24 (2010). https://doi.org/10.1007/s11043-009-9095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-009-9095-8

Keywords

Navigation