Skip to main content
Log in

A 3D moisture-stress FEM analysis for time dependent problems in timber structures

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus: Abaqus/Standard, Theory Manual. Version 6.5. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket (2004a)

    Google Scholar 

  • Abaqus: Abaqus/Standard, User’s Manual. Version 6.5. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket (2004b)

    Google Scholar 

  • Aicher, S., Dill-Langer, G.: Effect of lamination anysotropy and lay-up in glued-laminated timbers. J. Struct. Eng. 131(7), 1095–1103 (2005)

    Article  Google Scholar 

  • André, J.: Strengthening of timber structures with flax fibres. Technical Report 61, Licentiate Thesis, Department of Civil, Mining and Environmental Engineering, Luleå University of Technology (2007)

  • Avramidis, S.: Evaluation of the “three-variable” models for the prediction of equilibrium moisture content in wood. Wood Sci. Technol. 23, 251–258 (1989)

    Article  Google Scholar 

  • Avramidis, S., Siau, J.: An investigation of the external and internal resistance to moisture diffusion in wood. Wood Sci. Technol. 21, 249–256 (1987)

    Article  Google Scholar 

  • Chassagne, P., Bou-Saïd, E., Jullien, J., Galimard, P.: Three dimensional creep model for wood under variable humidity—numerical analyses at different material scales. Mech. Time-Depend. Mater. 9, 203–223 (2006)

    Google Scholar 

  • de Moura, M., Silva, M., de Morais, A., Morais, J.: Equivalent crack based mode ii fracture characterization of wood. Eng. Fract. Mech. 73, 978–993 (2006)

    Article  Google Scholar 

  • Dubois, F., Petit, C.: Modelling of the crack growth initiation in viscoelastic media by the Gθ v -integral. Eng. Fract. Mech. 72, 2821–2836 (2005)

    Article  Google Scholar 

  • Frandsen, H.: Selected constitutive models for simulating the hygromechanical response of wood. Technical Report no 10, Dissertation, Department of Civil Engineering, Aalborg University (2007)

  • Hanhijärvi, A.: Modelling of creep deformation mechanisms in wood. Technical Report no 231, Dissertation, VTT Technical Research Centre of Finland (1995)

  • Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. i: Orthotropic viscoelastic-mechanosorptive-plastic material model for the tranverse plane of wood. J. Eng. Mech. 129(9), 996–1005 (2003)

    Article  Google Scholar 

  • Helnwein, P.: Some remarks on the compressed matrix representation of symmetric second-order and fourth ordes tensors. Comput. Methods Appl. Mech. Eng. 190(22–23), 2753–2770 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Jönsson, J.: Moisture induced stresses in timber structures. Technical Report TVBK-1031, Dissertation, Division of Structural Engineering, Lund University of Technology (2005)

  • Leivo, M.: On the stiffness changes in nail plate trusses. Technical Report no 80, Dissertation, VTT Technical Research Centre of Finland (1991)

  • Liyu, W., Zhenyou, L., Guangjie, Z.: Wood fracture pattern during the water adsorption process. Holzforschung 57(6), 639–643 (2003)

    Article  Google Scholar 

  • Mackenzie-Helnwein, P., Hanhijärvi, A.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. ii: Algorithmic aspects and practical application. J. Eng. Mech. 129(9), 1006–1016 (2003)

    Article  Google Scholar 

  • Mackenzie-Helnwein, P., Eberhardsteiner, J., Mang, H.: A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details. Comput. Mech. 31, 204–218 (2003)

    Article  MATH  Google Scholar 

  • Malvern, L.: Introduction to the Mechanics of a Continuous Medium. Prentice–Hall, Englewood Clifs (1969)

    Google Scholar 

  • Marsden, J., Hughes, T.: Mathematical Foundation of Elasticity. Dover, New York (1992)

    Google Scholar 

  • Maugin, G.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Ormarsson, S.: Numerical analysis of moisture-related distorsions in sawn timber. Technical Report Ny serie no 1531, Dissertation, Chalmers University of Technology (1999)

  • Ranta-Maunus, A.: Effects of climate and climate variations on strength. In: Thelandersson, S., Larsen, H.J. (eds.) Timber Engineering. Wiley, New York (2003)

    Google Scholar 

  • Rosen, H.: The influence of external resistance on moisture adsorption rates in wood. Wood Fiber 10(3), 228–229 (1978)

    Google Scholar 

  • Santaoja, K., Leino, T., Ranta-Maunus, A., Hanhijärvi, A.: Mechano–sorptive structural analysis of wood by the Abaqus finite element program. Technical Report 1276, VTT Technical Research Centre of Finland (1991)

  • Schmidt, J., Kaliske, M.: Models for numerical failure analysis of wooden structures. Eng. Struct. 31, 571–579 (2009)

    Article  Google Scholar 

  • Sih, G., Michopoulos, J., Chou, S.: Hygrothermoelasticity. Nijhoff, Dordrecht (1986)

    Google Scholar 

  • Simo, J., Hughes, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  • Sjödin, J.: Steel-to-timber dowel joints—influence of moisture induced stresses. Technical Report no 31, Licentiate Thesis, Växjö University (2004)

  • Toratti, T.: Creep of timber beams in a variable environment. Technical Report no 31/TRT, Dissertation, Helsinki University of Technology (1992)

  • Toratti, T., Svensson, S.: Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci. Technol. 34, 317–326 (2000)

    Article  Google Scholar 

  • Toratti, T., Svensson, S.: Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci. Technol. 36, 145–156 (2002)

    Article  Google Scholar 

  • Vasic, S., Stanzl-Tschegg, S.: Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61, 367–374 (2007)

    Article  Google Scholar 

  • Vidal-Sallé, E., Chassagne, P.: Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model—application to wood material. Mech. Time-Depend. Mater. 11, 127–142 (2007)

    Article  Google Scholar 

  • Zuritz, C., Singh, R.P., Moini, S.M., Henderson, S.M.: Desorption isotherms of rough rice from 10°C to 40°C. Trans. ASAE 22, 433–440 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Fortino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortino, S., Mirianon, F. & Toratti, T. A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech Time-Depend Mater 13, 333–356 (2009). https://doi.org/10.1007/s11043-009-9103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-009-9103-z

Navigation