Skip to main content
Log in

Tensile strength at elevated temperature and its applicability as an accelerated testing methodology for unidirectional composites

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The applicability of a macroscopic time-temperature superposition principle (TTSP) to unidirectional composite strength is discussed based on the microscopic Simultaneous Fiber-Failure (SFF) model that has been presented by Koyanagi et al. (J. Compos. Mater. 43:1901–1914, 2009a). The SFF model estimates composite strengths as functions of fiber, matrix, and interface strengths. This paper first investigates the applicability of SFF to the complicated temperature dependence of composite strengths, i.e., one composite exhibits significant temperature dependence and another does not, considering the temperature dependence of the components, which results in successful estimations for the two composite systems used in the present study. The long-term durability predicted by the SFF and that predicted by the TTSP are then compared. They typically correspond to each other in various cases; accelerated testing methodology (ATM) employing TTSP is thus proved to be valid from the micromechanical viewpoint, assuming the SFF applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Curtin, W.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991)

    Article  Google Scholar 

  • Gatti, A., Mullin, J.V., Berry, J.M.: The role of bond strength in the fracture of advanced filament reinforced composites. ASTM Spec. Tech. Publ. 460, 573–582 (1969)

    Google Scholar 

  • Goda, K.: The role of interfacial debonding in increasing the strength and reliability of unidirectional fibrous composites. Compos. Sci. Technol. 59, 1871–1879 (1999)

    Article  Google Scholar 

  • Guedes, R.: Durability of polymer matrix composites: viscoelastic effect on static and fatigue loading. Compos. Sci. Technol. 67, 2574–2583 (2007)

    Article  Google Scholar 

  • Guedes, R.: Relationship between lifetime under creep and constant stress rate for polymer matrix composites. Compos. Sci. Technol. 69, 1200–1205 (2009)

    Article  Google Scholar 

  • Ha, S.K., Jin, K.K., Huang, Y.: Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42, 1873–1895 (2008)

    Article  Google Scholar 

  • Harlow, D., Phoenix, S.: The chain-of-bundles probability model for the strength of fibrous composites: I: Analysis and conjectures. J. Compos. Mater. 12, 195–214 (1978a)

    Article  Google Scholar 

  • Harlow, D., Phoenix, S.: The chain-of-bundles probability model for the strength of fibrous composites: II: A numerical study of convergence. J. Compos. Mater. 12, 314–334 (1978b)

    Article  Google Scholar 

  • Hongzhou, L., Yuxi, J., Gemi, M., Wei, J., Lijia, A.: Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites. Mater. Sci. Eng. A 425, 178–184 (2006)

    Article  Google Scholar 

  • Koyanagi, J.: Comparison of a viscoelastic frictional interface theory with a Kinetic Crack Growth theory in unidirectional composites. Compos. Sci. Technol. 69, 2158–2162 (2009)

    Article  Google Scholar 

  • Koyanagi, J., Ogihara, S.: Temperature dependence of glass fiber/epoxy interface normal strength examined by a cruciform specimen method. Compos. Part B 42, 1492–1496 (2011)

    Article  Google Scholar 

  • Koyanagi, J., Ogawa, F., Kawada, H., Hatta, H.: Time-dependent reduction of tensile strength caused by interfacial degradation under constant strain duration in UD-CFRP. J. Compos. Mater. 41, 3007–3026 (2007)

    Article  Google Scholar 

  • Koyanagi, J., Kotani, M., Hatta, H., Kawada, H.: A comprehensive model for determining tensile strengths of various unidirectional composites. J. Compos. Mater. 43, 1901–1914 (2009a)

    Article  Google Scholar 

  • Koyanagi, J., Shah, P.D., Kimura, S., Ha, S.K., Kawada, H.: Mixed-mode interfacial debonding simulation in single fiber composite under a transverse load. J. Solid Mech. Mater. Eng. 3, 796–806 (2009b)

    Article  Google Scholar 

  • Koyanagi, J., Yoneyama, S., Eri, K., Shah, P.D.: Time dependency of carbon/epoxy interface strength. Compos. Struct. 92, 150–154 (2010a)

    Article  Google Scholar 

  • Koyanagi, J., Yoneyama, S., Nemoto, A., Melo, J.: Time and temperature dependence of carbon/epoxy interface strength. Compos. Sci. Technol. 70, 1395–1400 (2010b)

    Article  Google Scholar 

  • Koyanagi, J., Yoshimura, A., Kawada, H., Aoki, Y.: A numerical simulation of time-dependent interface failure under shear and compressive loads in single-fiber composite. Appl. Compos. Mater. 17, 31–41 (2010c)

    Article  Google Scholar 

  • Landis, C., Beyerlein, I., McMeeking, R.: Micromechanical simulation of the failure of fiber reinforced composites. J. Mech. Phys. Solids 48, 621–648 (2000)

    Article  MATH  Google Scholar 

  • Miyano, Y., Nakada, M., Muki, R.: Applicability of fatigue life prediction method to polymer composites. Mech. Time-Depend. Mater. 3, 141–157 (1999)

    Article  Google Scholar 

  • Miyano, Y., Nakada, M., Sekine, N.: Accelerated testing for long-term durability of GFRP laminates for marine use. Compos. Part B 35, 497–502 (2004)

    Article  Google Scholar 

  • Miyano, Y., Nakada, M., Sekine, N.: Accelerated testing for long-term durability of FRP laminates for marine use. J. Compos. Mater. 39, 5–20 (2005)

    Article  Google Scholar 

  • Miyano, Y., Nakada, M., Cai, H.: Formulation of long-term creep and fatigue strengths of polymer composites based on accelerated testing methodology. J. Compos. Mater. 42, 1897–1919 (2008)

    Article  Google Scholar 

  • Nakada, M., Miyano, Y.: Verification of accelerated testing methodology for long-term CSR strength on three directions of unidirectional CFRP. In: Conference Proceeding in the US-Japan Conference on Composite Materials, 2008, Tokyo (2008)

    Google Scholar 

  • Nakada, M., Miyano, Y.: Accelerated testing for long-term fatigue strength of various FRP laminates for marine use. Compos. Sci. Technol. 69, 805–813 (2009)

    Article  Google Scholar 

  • Okabe, T., Takeda, N., Kamoshida, Y., Shimizu, M., Curtin, W.A.: A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Compos. Sci. Technol. 61, 1773–1787 (2001)

    Article  Google Scholar 

  • Okabe, T., Sekine, H., Ishii, K., Nishikawa, M., Takeda, N.: Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model. Compos. Sci. Technol. 65, 921–933 (2005)

    Article  Google Scholar 

  • Raghavan, J., Meshii, M.: Prediction of creep rupture of unidirectional carbon fiber reinforced polymer composite. Mater. Sci. Eng. A 197, 237–249 (1995)

    Article  Google Scholar 

  • Raghavan, J., Meshii, M.: Creep rupture of polymer composites. Compos. Sci. Technol. 57, 375–388 (1997)

    Article  Google Scholar 

  • Rosen, B.: Tensile failure of fibrous composites. AIAA J. 2, 1982–1991 (1964)

    Google Scholar 

  • Subramanian, S., Reifsnider, K.L., Stinchcomb, W.W.: Tensile strength of unidirectional composites: the role of efficiency and strength of fiber-matrix interface. J. Compos. Technol. Res. 17, 289–300 (1995)

    Article  Google Scholar 

  • Watanabe, N., Koga, R., Nakada, M., Miyano, Y., Muki, R.: Time-temperature dependent tensile behavior of unidirectional CFRP. In: Conference Proceeding in 14th International Conference on Composite Materials, San Diego (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Koyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyanagi, J., Nakada, M. & Miyano, Y. Tensile strength at elevated temperature and its applicability as an accelerated testing methodology for unidirectional composites. Mech Time-Depend Mater 16, 19–30 (2012). https://doi.org/10.1007/s11043-011-9160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9160-y

Keywords

Navigation