Skip to main content
Log in

Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this paper, the creep behavior of molybdenum disulphide (MoS2) filled polyamide 66 composite was investigated through sharp indentation at room temperature. Two types of indentation creep test, the 3-step indentation test, and the 5-step indentation test were considered in order to explore whether the measured creep response is mainly viscoelastic or includes a significant contribution from the plastic deformation developed during the loading phase. The experimental indentation creep data were analyzed within an analytical framework based on the hereditary integral operator for the ramp creep and a viscoelastic–plastic (VEP) model in order to determine the indentation creep compliance function including the short- and long-time modulus. The equivalent shear modulus calculated from the creep compliance function was compared to the indentation plane strain modulus derived from the initial slope of the unloading curve in order to investigate the validity of the Oliver and Pharr method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bernard, C., Keryvin, V., Sangleboeuf, J.C., Rouxel, T.: Indentation creep of window glass around glass transition. Mech. Mater. 42, 196–206 (2010)

    Article  Google Scholar 

  • Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D, Appl. Phys. 31(19), 2395–2405 (1998)

    Article  Google Scholar 

  • Chicot, D., Mercier, D.: Improvement in depth-sensing indentation to calculate the universal hardness on the entire loading curve. Mech. Mater. 40, 171–182 (2008)

    Article  Google Scholar 

  • Chudoba, T., Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191–198 (2001)

    Article  Google Scholar 

  • Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)

    Article  Google Scholar 

  • Fischer-Cripps, A.C.: Nanoindentation, 2nd edn. Springer, New York (2004)

    Book  Google Scholar 

  • Kermouche, G., Loubet, J.L., Bergheau, J.M.: Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech. Mater. 40, 271–283 (2008)

    Article  Google Scholar 

  • Huang, G., Lu, H.: Measurements of two independent viscoelastic functions by nanoindentation. Exp. Mech. 47, 87–98 (2007)

    Article  Google Scholar 

  • Lee, E.H.: Stress analysis in viscoelastic bodies. Q. Appl. Math. 13, 183–190 (1995)

    Google Scholar 

  • Lee, S., Knauss, W.G.: A note on the determination of relaxation and creep data from ramp tests. Mech. Time-Depend. Mater. 4, 1–7 (2000)

    Article  Google Scholar 

  • Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  • Mencik, J., He, L.H., Swain, M.V.: Determination of viscoelastic–plastic material parameters of biomaterials by instrumented indentation. J. Mech. Behav. Biomed. Mater. 2, 318–325 (2009)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  • Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20(8), 2094–2100 (2005)

    Article  Google Scholar 

  • Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33), 5625–5641 (2006)

    Article  Google Scholar 

  • Oyen, M.L., Cook, R.F.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139–150 (2003)

    Article  Google Scholar 

  • Radok, J.R.M.: Visco-elastic stress analysis. Q. Appl. Math. 15, 198–202 (1957)

    MathSciNet  MATH  Google Scholar 

  • Sakai, M., Shimizu, S., Miyajima, N., Tanabe, Y., Yasuda, E.: Viscoelastic indentation on iodine-treated coal tar pitch. Carbon 39, 605–614 (2001)

    Article  Google Scholar 

  • Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Vandamme, M., Ulm, F.J.: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43(10), 3142–3165 (2006)

    Article  MATH  Google Scholar 

  • Vandamme, M., Tweedie, C., Constantinides, G., Ulm, F.J., Van Vliet, K.: Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact load. J. Mater. Res. 27(1), 302–312 (2012)

    Article  Google Scholar 

  • Zhang, C.Y., Zhang, Y.W., Zeng, K.Y., Shen, L.: Characterization of mechanical properties of polymers by nanoindentation tests. Philos. Mag. 86(28), 4487–4506 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Executive Agency for Higher Education, Research, Development and Innovation Funding (CNCSIS-UEFISCDI), Project number PNII–IDEI 788/2008. In addition, the authors are grateful to Loredana Santo from Tor Vergata University of Rome (Italy), who kindly provided access to the testing equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicia Stan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stan, F., Fetecau, C. Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation. Mech Time-Depend Mater 17, 205–221 (2013). https://doi.org/10.1007/s11043-012-9198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9198-5

Keywords

Navigation