Skip to main content
Log in

A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents a three-dimensional (3D) finite deformation thermomechanical model to study the glass transition and shape memory behaviors of an epoxy based shape memory polymer (SMP) (Veriflex E) and a systematic material parameter identification scheme from a set of experiments. The model was described by viscoelastic elements placed in parallel to represent different active relaxation mechanisms around glass transition temperature in the polymer. A set of standard material tests was proposed and conducted to identify the model parameter values, which consequently enable the model to reproduce the experimentally observed shape memory (SM) behaviors. The parameter identification procedure proposed in this paper can be used as an effective tool to assist the construction and application of such 3D multi-branch model for general SMP materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The anisotropy in polymer thermal expansion could be accounted for by using additional thermal expansion components in the model.

References

  • Alvine, K.J., et al.: Capillary instability in nanoimprinted polymer films. Soft Matter 5, 2913–2918 (2009)

    Article  Google Scholar 

  • Anand, L., Kothari, M.: A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids 44(4), 525–558 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A 3-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  • Barot, G., Rao, I.J., Rajagopal, K.R.: A thermodynamic framework for the modeling of crystallizable shape memory polymers. Int. J. Eng. Sci. 46(4), 325–351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharyya, A., Tobushi, H.: Analysis of the isothermal mechanical response of a shape memory polymer rheological model. Polym. Eng. Sci. 40(12), 2498–2510 (2000)

    Article  Google Scholar 

  • Buckley, P.R., et al.: Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans. Biomed. Eng. 53(10), 2075–2083 (2006)

    Article  Google Scholar 

  • Castro, F., et al.: Effects of thermal rates on the thermomechanical behaviors of amorphous shape memory polymers. Mech. Time-Depend. Mater. 14(3), 219–241 (2010)

    Article  Google Scholar 

  • Castro, F., et al.: Time and temperature dependent recovery of epoxy-based shape memory polymers. J. Eng. Mater. Technol.-Trans. ASME 133, 021025 (2011)

    Article  Google Scholar 

  • Chen, Y.C., Lagoudas, D.C.: A constitutive theory for shape memory polymers. Part I—large deformations. J. Mech. Phys. Solids 56(5), 1752–1765 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Chung, T., Rorno-Uribe, A., Mather, P.T.: Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1), 184–192 (2008)

    Article  Google Scholar 

  • Marzio, E.A., Yang, A.J.M.: Configurational entropy approach to the kinetics of glasses. J. Res. Natl. Inst. Stand. Technol. 102(2), 135–157 (1997)

    Article  Google Scholar 

  • Diani, J., Liu, Y.P., Gall, K.: Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym. Eng. Sci. 46(4), 486–492 (2006)

    Article  Google Scholar 

  • Diani, J., et al.: Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49(5), 793–799 (2012)

    Article  Google Scholar 

  • Ding, Y., et al.: Relaxation behavior of polymer structures fabricated by nanoimprint lithography. ASC Nano 1(2), 84–92 (2007)

    Article  Google Scholar 

  • Engels, T.A.P., et al.: Predicting the long-term mechanical performance of polycarbonate from thermal history during injection molding. Macromol. Mater. Eng. 294(12), 829–838 (2009)

    Google Scholar 

  • Gall, K., et al.: Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res., Part A 73A(3), 339–348 (2005)

    Article  Google Scholar 

  • Ge, Q., et al.: Thermomechanical behavior of shape memory elastomeric composites. J. Mech. Phys. Solids 60(1), 67–83 (2011)

    Google Scholar 

  • Ge, Q., et al.: Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers. Soft Matter 8(43), 11098–11105 (2012)

    Article  Google Scholar 

  • Ge, Q., et al.: Mechanisms of triple-shape polymeric composites featuring dual thermal transitions. Soft Matter 9, 2212–2223 (2013)

    Article  Google Scholar 

  • He, Z.W., et al.: Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv. Mater. 23(28), 3192 (2011)

    Article  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)

    Google Scholar 

  • Huang, W.M., et al.: Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005)

    Article  Google Scholar 

  • Jiang, H.Y., Kelch, S., Lendlein, A.: Polymers move in response to light. Adv. Mater. 18(11), 1471–1475 (2006)

    Article  Google Scholar 

  • Jung, Y.C., So, H.H., Cho, J.W.: Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J. Macromol. Sci. B, Phys. 45(4), 453–461 (2006)

    Article  Google Scholar 

  • Koerner, H., et al.: Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3(2), 115–120 (2004)

    Article  Google Scholar 

  • Kovacs, A.J., et al.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci., Polym. Phys. Ed. 17(7), 1097–1162 (1979)

    Article  Google Scholar 

  • Kumar, U.N., et al.: Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J. Mater. Chem. 20(17), 3404–3415 (2010)

    Article  Google Scholar 

  • Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem., Int. Ed. Engl. 41(12), 2035–2057 (2002)

    Google Scholar 

  • Lendlein, A., Kelch, S.: Shape-memory polymers as stimuli-sensitive implant materials. Clin. Hemorheol. Microcirc. 32(2), 105–116 (2005)

    Google Scholar 

  • Lendlein, A., et al.: Light-induced shape-memory polymers. Nature 434(7035), 879–882 (2005)

    Article  Google Scholar 

  • Li, J.J., Xie, T.: Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44(1), 175–180 (2011)

    Article  Google Scholar 

  • Liu, Y.P., et al.: Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 36(10), 929–940 (2004)

    Article  Google Scholar 

  • Liu, Y.P., et al.: Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22(2), 279–313 (2006)

    Article  MATH  Google Scholar 

  • Liu, C., Qin, H., Mather, P.T.: Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)

    Article  Google Scholar 

  • Long, K.N., et al.: Photomechanics of light-activated polymers. J. Mech. Phys. Solids 57(7), 1103–1121 (2009)

    Article  MATH  Google Scholar 

  • Long, K.N., et al.: Light-induced stress relief to improve flaw tolerance in network polymers. J. Appl. Phys. 107, 053519 (2010a)

    Article  Google Scholar 

  • Long, K.N., et al.: Photo-induced creep of network polymers. Int. J. Struct. Ch. Solids 2, 41–52 (2010b)

    Google Scholar 

  • Long, K.N., Dunn, M.L., Qi, H.J.: Mechanics of soft active materials with phase evolution. Int. J. Plast. 26(4), 603–616 (2010c)

    Article  MATH  Google Scholar 

  • Long, K.N., Dunn, M.L., Qi, H.J.: Photo-induced deformation of active polymer films: single spot irradiation. Int. J. Solids Struct. 48, 2089–2101 (2011)

    Article  Google Scholar 

  • Mather, P.T., Luo, X.F., Rousseau, I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)

    Article  Google Scholar 

  • McClung, A.J.W., Tandon, G.P., Baur, J.W.: Strain rate- and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Depend. Mater. 16(2), 205–221 (2012)

    Article  Google Scholar 

  • McClung, A., Tandon, G., Baur, J.W.: Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mech. Time-Depend. Mater. 17(1), 39–52 (2013)

    Article  Google Scholar 

  • Mohr, R., et al.: Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. USA 103(10), 3540–3545 (2006)

    Article  Google Scholar 

  • Morshedian, J., Khonakdar, H.A., Rasouli, S.: Modeling of shape memory induction and recovery in heat-shrinkable polymers. Macromol. Theory Simul. 14(7), 428–434 (2005)

    Article  Google Scholar 

  • Nguyen, T.D., et al.: A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation. J. Mech. Phys. Solids 56(9), 2792–2814 (2008)

    Article  MATH  Google Scholar 

  • Nguyen, T.D., et al.: Modeling the relaxation mechanisms of amorphous shape memory polymers. Adv. Mater. 22(31), 3411–3423 (2010)

    Article  Google Scholar 

  • Qi, H.J., Joyce, K., Boyce, M.C.: Durometer hardness and the stress–strain behavior of elastomeric materials. Rubber Chem. Technol. 76(2), 419–435 (2003)

    Article  Google Scholar 

  • Qi, H.J., et al.: Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J. Mech. Phys. Solids 56(5), 1730–1751 (2008)

    Article  MATH  Google Scholar 

  • Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)

    Google Scholar 

  • Ryu, J., et al.: Photo-origami. Appl. Phys. Lett. 100, 161908 (2012)

    Article  Google Scholar 

  • Schmidt, A.M.: Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 27(14), 1168–1172 (2006)

    Article  Google Scholar 

  • Scott, T.F., et al.: Photoinduced plasticity in cross-linked polymers. Science 308(5728), 1615–1617 (2005)

    Article  Google Scholar 

  • Scott, T.F., Draughon, R.B., Bowman, C.N.: Actuation in crosslinked polymers via photoinduced stress relaxation. Adv. Mater. 18(16), 2128 (2006)

    Article  Google Scholar 

  • Sherrod, P.H.: Nonlinear regression analysis program, NLREG Version 5.0. (2000). Available from http://www.nlreg.com/

  • Srivastava, V., Chester, S.A., Anand, L.: Thermally actuated shape-memory polymers: experiments, theory, and numerical simulations. J. Mech. Phys. Solids 58(8), 1100–1124 (2010)

    Article  MATH  Google Scholar 

  • Tobushi, H., et al.: Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater. Struct. 5(4), 483–491 (1996)

    Article  Google Scholar 

  • Tobushi, H., Hashimoto, T., Ito, N.: Shape fixty and shape recovery in a film of shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 9, 127–136 (1998)

    Article  Google Scholar 

  • Tool, A.Q.: Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29(9), 240–253 (1946)

    Article  Google Scholar 

  • Tool, A.Q.: Effect of heat-treatment on the density and constitution of high-silica glasses of the borosilicate type. J. Am. Ceram. Soc. 31(7), 177–186 (1948)

    Article  Google Scholar 

  • Tool, A.Q., Eichlin, C.G.: Variations caused in the heating curves of glass by heat treatment. J. Am. Ceram. Soc. 14(4), 276–308 (1931)

    Article  Google Scholar 

  • Treloar, L.R.G.: The Physics of Rubber Elasticity. Monographs on the Physics and Chemistry of Materials, p. 342, 2nd edn. Clarendon Press, Oxford (1958)

    Google Scholar 

  • Wang, A., et al.: Programmable, pattern-memorizing polymer surface. Adv. Mater. 23, 3669–3673 (2011)

    Article  Google Scholar 

  • Weber, G., Anand, L.: Finite deformation constitutive-equations and a time integration procedure for isotropic, hyperelastic viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990)

    Article  MATH  Google Scholar 

  • Wei, Z.G., Sandstrom, R., Miyazaki, S.: Shape-memory materials and hybrid composites for smart systems—part I shape-memory materials. J. Mater. Sci. 33(15), 3743–3762 (1998)

    Article  Google Scholar 

  • Westbrook, K.K., et al.: Improved testing system for thermomechanical experiments on polymers using uniaxial compression equipment. Polym. Test. 29(4), 503–512 (2010a)

    Article  MathSciNet  Google Scholar 

  • Westbrook, K.K., et al.: Constitutive modeling of shape memory effects in semicrystalline polymers with Stretch induced crystallization. J. Eng. Mater. Technol.-Trans. ASME 132, 041010 (2010b)

    Article  Google Scholar 

  • Westbrook, K.K., et al.: A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater. 43(12), 853–869 (2011)

    Article  Google Scholar 

  • Westbrook, K.K., et al.: Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater. Struct. 20, 065010 (2011)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Phys. Rev. 98(5), 1549 (1955)

    Google Scholar 

  • Xie, T.: Tunable polymer multi-shape memory effect. Nature 464(7286), 267–270 (2010)

    Article  Google Scholar 

  • Xie, T., Xiao, X.C., Cheng, Y.T.: Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30(21), 1823–1827 (2009)

    Article  Google Scholar 

  • Yakacki, C.M., et al.: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14), 2255–2263 (2007)

    Article  Google Scholar 

  • Yu, K., et al.: Carbon nanotube chains in a shape memory polymer/carbon black composite: To significantly reduce the electrical resistivity. Appl. Phys. Lett. 98, 074102 (2011)

    Article  Google Scholar 

  • Yu, K., et al.: Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8(20), 5687–5695 (2012)

    Article  Google Scholar 

  • Yu, K., et al.: Design considerations for shape memory polymer composites with magnetic particles. J. Compos. Mater. 47(1), 51–63 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

H.J.Q. acknowledges the support through AFRL summer faculty fellowship program (contract FA8650-07-D-5800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey W. Baur or H. Jerry Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K., McClung, A.J.W., Tandon, G.P. et al. A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech Time-Depend Mater 18, 453–474 (2014). https://doi.org/10.1007/s11043-014-9237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9237-5

Keywords

Navigation