Skip to main content
Log in

Symbolic integration of multibody system dynamics with the finite element method

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

With the widespread use of computer-aided engineering (CAE) to solve computational mechanics problems, engineering design has become more accurate and efficient. The integration of the finite element method (FEM) and flexible multibody dynamics (FMD) is a typical application of computational mechanics. It constitutes an important contribution to engineering development, but its potential is restrained by numerical computation. Computational time is a critical factor that influences the efficiency and cost of design and analysis. The advent of symbolic computation enables faster simulation code, but the symbolic integration of FEM and FMD is at the initial stages. A general symbolic integration procedure is presented in this paper. The performance of the symbolic model is compared with models from the literature and numerically-based commercial software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Astley, R.J.: Finite Elements in Solids and Structures. An Introduction. Springer, Berlin (1992)

    Google Scholar 

  2. Bakr, E., Shabana, A.A.: Geometrically nonlinear analysis of multibody systems. Comput. Struct. 23(6), 739–751 (1986)

    Article  MATH  Google Scholar 

  3. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K., Gruber, P.: Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst. Dyn. 34(4), 373–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001)

    Article  MATH  Google Scholar 

  7. Clough, R.W., Penzien, J., Griffin, D.: Dynamics of structures. J. Appl. Mech. 44, 366 (1977)

    Article  Google Scholar 

  8. Craig, R.R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, pp. 1573–1584 (2000)

    Google Scholar 

  9. Dibold, M., Gerstmayr, J., Irschik, H.: A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. J. Comput. Nonlinear Dyn. 4(2), 021,006 (2009)

    Article  Google Scholar 

  10. Escalona, J., Hussien, H., Shabana, A.: Application of the absolute nodal coordinate formulation to multibody system dynamics. Tech. Rep. No. MBS97-1-UIC, University of Illinois at Chicago Circle Department of Mechanical Engineering (1997)

  11. Ferretti, G., Schiavo, F., Vigano, L.: Object-oriented modelling and simulation of flexible multibody thin beams in modelica with the finite element method. In: 4th Modelica Conference. Hamburg–Harburg, Germany (2005)

    Google Scholar 

  12. Finlayson, B.A.: The Method of Weighted Residuals and Variational Principles, vol. 73. SIAM, Philadelphia (2013)

    Book  MATH  Google Scholar 

  13. Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  14. Liang, Y.: Symbolic integration of multibody system dynamics with finite element method. UWSpace (2017). http://hdl.handle.net/10012/11152

  15. Liu, J., Hong, J.: Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. J. Sound Vib. 278(4), 1147–1162 (2004)

    Article  Google Scholar 

  16. Lugrís, U., Naya, M.A., Pérez, J.A., Cuadrado, J.: Implementation and efficiency of two geometric stiffening approaches. Multibody Syst. Dyn. 20(2), 147–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mayo, J., Dominguez, J.: A finite element geometrically nonlinear dynamic formulation of flexible multibody systems using a new displacements representation. J. Vib. Acoust. 119(4), 573–581 (1997)

    Article  Google Scholar 

  18. Mayo, J., Dominguez, J., Shabana, A.A.: Geometrically nonlinear formulations of beams in flexible multibody dynamics. J. Vib. Acoust. 117(4), 501–509 (1995)

    Article  Google Scholar 

  19. McPhee, J.: Automatic generation of motion equations for planar mechanical systems using the new set of “branch coordinates”. Mech. Mach. Theory 33(6), 805–823 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory. Math. Comput. Model. 10(1), 1–23 (2004)

    MATH  Google Scholar 

  21. Piedbœuf, J.C., Moore, B.: On the foreshortening effects of a rotating flexible beam using different modeling methods. Mech. Struct. Mach. 30(1), 83–102 (2002). https://doi.org/10.1081/SME-120001478.

    Article  Google Scholar 

  22. Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems, vol. 112. Springer, Berlin (2013)

    MATH  Google Scholar 

  23. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  25. Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998)

    Article  MATH  Google Scholar 

  26. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  27. Shames, I.H.: Energy and Finite Element Methods in Structural Mechanics. CRC Press, Boca Raton (1985)

    MATH  Google Scholar 

  28. Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000)

    Article  MATH  Google Scholar 

  29. Shi, P., McPhee, J., Heppler, G.: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody Syst. Dyn. 5(1), 79–104 (2001)

    Article  MATH  Google Scholar 

  30. Tiller, M.: Introduction to Physical Modeling with Modelica, vol. 615. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiteng Liang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., McPhee, J. Symbolic integration of multibody system dynamics with the finite element method. Multibody Syst Dyn 43, 387–405 (2018). https://doi.org/10.1007/s11044-018-9627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-9627-6

Keywords

Navigation