Skip to main content
Log in

Adaptive sliding mode control of \(n\) flexible-joint robot manipulators in the presence of structured and unstructured uncertainties

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This study investigates a voltage-based adaptive sliding mode control (VB-ASMC) to tracking the position of an \(n\) rigid-link flexible-joint (RLFJ) robot manipulator under the presence of uncertainties and external disturbances. First, the dynamic equations of the \(n\)-RLFJ robot manipulator have been divided into \(n\) subsystems, and for each of them a voltage-based sliding mode control (VB-SMC) is designed simultaneously. The mathematical proof shows that the closed-loop system under VB-SMC has global asymptotic stability. Second, due to the use of the sign function in the VB-SMC structure, the occurrence of chattering is inevitable. Therefore, to overcome this problem, an adaptive estimator is designed to estimate the boundary of uncertainties. Since the adaptive estimator part in the VB-ASMC has only one law, the proposed control has a very low computational volume. The Lyapunov stability theorem shows that the controlled closed-loop system under the VB-ASMC has global asymptotic stability. Finally, extensive simulations on the single and 2-RLFJ robot manipulator and practical implementation on the single-RLFJ robot manipulator are presented to demonstrate the effectiveness and improved performance of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Zhang, Y., Jin, L.: Robot Manipulator Redundancy Resolution. Wiley, New York (2017)

    Google Scholar 

  2. Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40(3), 261–285 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Kiang, C.T., Spowage, A., Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. 77(1), 187–213 (2015)

    Google Scholar 

  5. Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    MATH  Google Scholar 

  6. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109, 310–318 (1987). https://doi.org/10.1115/1.3143860

    Article  MATH  Google Scholar 

  7. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)

    MATH  Google Scholar 

  8. Olfati-Saber, R.: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Massachusetts Inst. Technol. Press, Cambridge (2001)

    Google Scholar 

  9. Meng, D., She, Y., Xu, W., Lu, W., Liang, B.: Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody Syst. Dyn. 43(4), 321–347 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)

    Google Scholar 

  11. Gattringer, H., Oberhuber, B., Mayr, J., Bremer, H.: Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn. 32(1), 117–131 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Miranda-Colorado, R., Moreno-Valenzuela, J.: Experimental parameter identification of flexible joint robot manipulators. Robotica 36(3), 313–332 (2018)

    Google Scholar 

  13. Ginoya, D., Shendge, P., Phadke, S.: Delta-operator-based extended disturbance observer and its applications. IEEE Trans. Ind. Electron. 62(9), 5817–5828 (2015)

    Google Scholar 

  14. Liu, H.-S., Huang, Y.: Bounded adaptive output feedback tracking control for flexible-joint robot manipulators. J. Zhejiang Univ. Sci. A 19(7), 557–578 (2018)

    Google Scholar 

  15. Korayem, M.H., Nekoo, S.R.: Finite-time state-dependent Riccati equation for time-varying nonaffine systems: rigid and flexible joint manipulator control. ISA Trans. 54, 125–144 (2015). https://doi.org/10.1016/j.isatra.2014.06.006

    Article  Google Scholar 

  16. Ulrich, S., Sasiadek, J.Z., Barkana, I.: Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. J. Guid. Control Dyn. 37(6), 1961–1975 (2014)

    Google Scholar 

  17. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal., Real World Appl. 14(1), 483–494 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Subudhi, B., Morris, A.S.: Singular perturbation based neuro-H\(\infty \) control scheme for a manipulator with flexible links and joints. Robotica 24(2), 151–161 (2006)

    Google Scholar 

  19. Abe, A.: Trajectory planning for flexible Cartesian robot manipulator by using artificial neural network: numerical simulation and experimental verification. Robotica 29(5), 797–804 (2011)

    Google Scholar 

  20. Chaoui, H., Gueaieb, W., Biglarbegian, M., Yagoub, M.C.: Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators. Robotics 2(2), 66–91 (2013)

    Google Scholar 

  21. Chaoui, H., Gueaieb, W.: Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51(2), 159–186 (2008)

    Google Scholar 

  22. Lightcap, C.A., Banks, S.A.: An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Trans. Control Syst. Technol. 18(1), 91–103 (2010)

    Google Scholar 

  23. Ulrich, S., Sasiadek, J.Z.: Extended Kalman filtering for flexible joint space robot control. In: American Control Conference, ACC, 2011, pp. 1021–1026. IEEE Press, New York (2011)

    Google Scholar 

  24. Nikdel, P., Hosseinpour, M., Badamchizadeh, M.A., Akbari, M.A.: Improved Takagi–Sugeno fuzzy model-based control of flexible joint robot via hybrid-Taguchi genetic algorithm. Eng. Appl. Artif. Intell. 33, 12–20 (2014)

    Google Scholar 

  25. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  26. Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67(2), 1525–1537 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica 46(7), 1228–1233 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Izadbakhsh, A.: A note on the nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 89, 2753–2767 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Izadbakhsh, A.: Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn. 85(2), 751–765 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Zirkohi, M.M., Fateh, M.M., Shoorehdeli, M.A.: Type-2 fuzzy control for a flexible-joint robot using voltage control strategy. Int. J. Autom. Comput. 10(3), 242–255 (2013)

    Google Scholar 

  32. Khooban, M.H., Niknam, T., Blaabjerg, F., Dehghani, M.: Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study. IET Sci. Meas. Technol. 10(7), 776–785 (2016)

    Google Scholar 

  33. Shokoohinia, M.R., Fateh, M.M.: Robust dynamic sliding mode control of robot manipulators using the Fourier series expansion. Trans. Inst. Meas. Control 1–8 (2018). https://doi.org/10.1177/0142331218802357

    Google Scholar 

  34. Soltanpour, M.R., Zolfaghari, B., Soltani, M., Khooban, M.H.: Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int. J. Innov. Comput. Inf. Control 9(7), 2713–2726 (2013)

    Google Scholar 

  35. Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart–Pendulum System. ISA Trans. 52(6), 870–880 (2013)

    Google Scholar 

  36. Orlov, Y.V., Utkin, V.: Sliding mode control in indefinite-dimensional systems. Automatica 23(6), 753–757 (1987)

    MathSciNet  MATH  Google Scholar 

  37. Huang, A.-C., Chen, Y.-C.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004)

    Google Scholar 

  38. Zhang, L., Liu, L., Wang, Z., Xia, Y.: Continuous finite-time control for uncertain robot manipulators with integral sliding mode. IET Control Theory Appl. (2018). https://doi.org/10.1049/iet-cta.2017.1361

    Article  MathSciNet  Google Scholar 

  39. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Soltanpour, M.R., Otadolajam, P., Khooban, M.H.: Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci. Meas. Technol. 9(3), 322–334 (2014)

    Google Scholar 

  41. Soltanpour, M.R., Khooban, M.H., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014)

    Google Scholar 

  42. Zouari, L., Abid, H., Abid, M.: Sliding mode and PI controllers for uncertain flexible joint manipulator. Int. J. Autom. Comput. 12(2), 117–124 (2015)

    Google Scholar 

  43. Zhang, B., Yang, X., Zhao, D., Spurgeon, S.K., Yan, X.: Sliding mode control for nonlinear manipulator systems. IFAC-PapersOnLine 50(1), 5127–5132 (2017)

    Google Scholar 

  44. Suryawanshi, P.V., Shendge, P.D., Phadke, S.B.: A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator. Int. J. Dyn. Control 4(4), 456–465 (2016)

    MathSciNet  Google Scholar 

  45. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Ebrahimi, M.M., Piltan, F., Bazregar, M., Nabaee, A.: Artificial chattering free on-line modified sliding mode algorithm: applied in continuum robot manipulator. Int. J. Inf. Eng. Electron. Bus. 5(5), 57 (2013)

    Google Scholar 

  47. Lewis, F.L.: Neural network control of robot manipulators. IEEE Expert 11(3), 64–75 (1996)

    MathSciNet  Google Scholar 

  48. Moberg, S.: Modeling and Control of Flexible Manipulators. Linköping University Electronic Press, Linköping (2010)

    Google Scholar 

  49. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  50. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  51. Quanser Inc: 2 DOF Serial Flexible Joint Robot, User Manual (2018). https://www.quanser.com/products/2-dof-serial-flexible-joint/. Accessed June 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Soltanpour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Dynamic equations of Quanser 2-RLFJ serial robot manipulator according to (14) can be defined as [51]:

figure ag

where the vector of the state variables is considered as

$$ x= [ \theta _{m_{1}}, \theta _{m_{2}},\alpha _{1}, \alpha _{2}, \dot{\theta }_{m_{1}}, \dot{\theta }_{m_{2}}, \dot{\alpha }_{1}, \dot{\alpha }_{2} ]^{T}. $$
(74)

The other coefficients expressed in (72) and (73) are as bellow:

$$\begin{aligned} f_{1} &= \left . \frac{R_{m_{1}} K_{s_{1}} x_{3} - ( K_{g_{1}} ^{2} K_{m_{1}} K_{t_{1}} \eta _{g_{1}} \eta _{m_{1}} + B_{r_{1}} R_{m _{1}} ) x_{5}}{R_{m_{1}} J_{eq_{1}}} \right \vert _{x=e+ x_{d}}, \end{aligned}$$
(75)
$$\begin{aligned} f_{2} &= \left .\frac{R_{m_{2}} K_{s_{2}} x_{4} - ( K_{g_{2}} ^{2} K_{m_{2}} K_{t_{2}} \eta _{g_{2}} \eta _{m_{2}} + B_{r_{2}} R_{m _{2}} ) x_{6}}{R_{m_{2}} J_{eq_{2}}} \right \vert _{x=e+ x_{d}}, \end{aligned}$$
(76)
$$\begin{aligned} f_{3} &= \frac{1}{R_{m_{1}} J_{eq_{1}} J_{l_{1}}} \bigl( g J _{eq_{1}} R_{m_{1}} L_{2} m_{1} \sin ( x_{1} + x_{3} ) - R_{m_{1}} K_{s_{1}} ( J_{eq_{1}} + J_{l_{1}} ) x_{3} \\ &\quad {}+ \bigl( ( - B_{l_{1}} J_{eq_{1}} + B_{r_{1}} J_{l_{1}} ) R_{m_{1}} + K_{g_{1}}^{2} K_{m_{1}} K_{t_{1}} \eta _{g_{1}} \eta _{m _{1}} J_{l_{1}} \bigr) x_{5} - B_{l_{1}} R_{m_{1}} J_{eq_{1}} x_{7} \bigr) \Biggr\vert _{x=e+ x_{d}}, \end{aligned}$$
(77)
$$\begin{aligned} f_{4} &= \frac{1}{R_{m_{2}} J_{eq_{2}} J_{l_{2}}} \bigl( g J _{eq_{2}} R_{m_{2}} L_{2} m_{2} \sin ( x_{2} + x_{4} ) - R_{m_{2}} K_{s_{2}} ( J_{eq_{2}} + J_{l_{2}} ) x_{4} \\ &\quad {}+ \bigl( ( - B_{l_{2}} J_{eq_{2}} + B_{r_{2}} J_{l_{2}} ) R_{m_{2}} + K_{g_{2}}^{2} K_{m_{2}} K_{t_{2}} \eta _{g_{2}} \eta _{m _{2}} J_{l_{2}} \bigr) x_{6} - B_{l_{2}} R_{m_{2}} J_{eq_{2}} x_{8} \bigr) \Biggr\vert _{x=e+ x_{d}}, \end{aligned}$$
(78)
$$\begin{aligned} &\left \{ \textstyle\begin{array}{l} b_{1} = \frac{\eta _{g_{1}} K_{g_{1}} \eta _{m_{1}} K_{t_{1}}}{R_{m_{1}} J_{eq_{1}}}, \\ b_{2} = \frac{\eta _{g_{2}} K_{g_{2}} \eta _{m_{2}} K_{t_{2}}}{R_{m_{2}} J_{eq_{2}}}, \end{array}\displaystyle \right . \end{aligned}$$
(79)
$$\begin{aligned} &\left \{ \textstyle\begin{array}{l} b_{3} =- \frac{\eta _{g_{1}} K_{g_{1}} \eta _{m_{1}} K_{t_{1}}}{R_{m _{1}} J_{eq_{1}}}, \\ b_{4} =- \frac{\eta _{g_{2}} K_{g_{2}} \eta _{m_{2}} K_{t_{2}}}{R_{m _{2}} J_{eq_{2}}}. \end{array}\displaystyle \right . \end{aligned}$$
(80)

The parameters, as well as their values, for both subsystems are shown in Table 4.

Table 4 Motor and manipulator parameters of Quanser 2-RLFJ robot manipulator [51]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaare, S., Soltanpour, M.R. & Moattari, M. Adaptive sliding mode control of \(n\) flexible-joint robot manipulators in the presence of structured and unstructured uncertainties. Multibody Syst Dyn 47, 397–434 (2019). https://doi.org/10.1007/s11044-019-09693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09693-1

Keywords

Navigation