Skip to main content
Log in

Point and Interval Solar Power Forecasting Using Hybrid Empirical Wavelet Transform and Robust Wavelet Kernel Ridge Regression

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this paper, a new and efficient hybrid empirical wavelet transform (EWT)-based reduced robust Mexican hat wavelet kernel ridge regression (RMHWK) model is proposed to achieve both point and interval forecasting of solar power in a smart grid scenario. Initially, the actual nonlinear solar power data series was decomposed by the EWT method. A reduced robust kernel ridge regression (RKRR) approach was incorporated that shows a notable decrease in training time without appreciable loss in forecasting accuracy. The reduction in the size of the kernel matrix was achieved by selecting a set of random support vectors from the training data set. For validating the superior performance of the proposed EWT-RMHWK forecasting model, a numerical experimentation implementing a real-time data set of 1 MW solar power plant (Odisha, India) as well as an online historical data set (Florida, USA) was considered and compared with other hybrid models using either empirical mode decomposition- or wavelet decomposition-based RKRR and EWT-ELM, etc. The kernel parameters were optimized with the chaotic water cycle algorithm to boost the performance of the proposed prediction model. Further, the proposed EWT-RKRR method was used to construct prediction interval forecasting with three different confidence levels with 90%, 95%, and 99% for Florida solar power plant using different time horizons of 15 min, 1 h, and 1 day, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Ak, R., Fink, O., & Zio, E. (2015). Two machine learning approaches for short-term wind speed time-series prediction. IEEE Transactions on Neural Networks and Learning Systems, 27(8), 1734–1747.

    Google Scholar 

  • Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378–390.

    Google Scholar 

  • Armengot, M., Laparra, V., Gómez-Chova, L., Malo, J., & Camps-Valls, G. (2010). Adaptive kernel ridge regression for image denoising. In 2010 IEEE international workshop on machine learning for signal processing (pp. 432–437). IEEE.

  • Boroojeni, K. G., Amini, M. H., Nejadpak, A., Iyengar, S. S., Hoseinzadeh, B., & Bak, C. L. (2016, May). A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources. In 2016 IEEE international conference on electro information technology (EIT) (pp. 0510–0515). IEEE.

  • Bouzerdoum, M., Mellit, A., & Pavan, A. M. (2013). A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Solar Energy, 98, 226–235.

    Google Scholar 

  • Carriere, T., Vernay, C., Pitaval, S., & Kariniotakis, G. (2019). A novel approach for seamless probabilistic photovoltaic power forecasting covering multiple time frames. IEEE Transactions on Smart Grid (early access). https://doi.org/10.1109/tsg.2019.2951288.

    Article  Google Scholar 

  • Cawley, G. C., & Talbot, N. L. (2002). Reduced rank kernel ridge regression. Neural Processing Letters, 16(3), 293–302.

    Google Scholar 

  • Chen, X., Dong, Z. Y., Meng, K., Xu, Y., Wong, K. P., & Ngan, H. W. (2012). Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Transactions on Power Systems, 27(4), 2055–2062.

    Google Scholar 

  • Chupong, C., & Plangklang, B. (2011). Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Procedia, 9, 230–237.

    Google Scholar 

  • Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014–1020.

    Google Scholar 

  • Dai, W., Chen, Q., Chu, F., Ma, X., & Chai, T. (2017). Robust regularized random vector functional link network and its industrial application. IEEE Access, 5, 16162–16172.

    Google Scholar 

  • David, M., Ramahatana, F., Trombe, P. J., & Lauret, P. (2016). Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Solar Energy, 133, 55–72.

    Google Scholar 

  • Deng, W. Y., Ong, Y. S., & Zheng, Q. H. (2016). A fast reduced kernel extreme learning machine. Neural Networks, 76, 29–38.

    Google Scholar 

  • Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy, 37(1), 1–8.

    Google Scholar 

  • Gilles, J. (2013). Empirical wavelet transform. IEEE Transactions on Signal Processing, 61(16), 3999–4010.

    Google Scholar 

  • Guo, J., Xu, X., Lian, W., & Zhu, H. (2019). A new approach for interval forecasting of photovoltaic power based on generalized weather classification. International Transactions on Electrical Energy Systems, 29(4), e2802.

    Google Scholar 

  • Guo, Z., Zhao, W., Lu, H., & Wang, J. (2012). Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy, 37(1), 241–249.

    Google Scholar 

  • Han, Y., Wang, N., Ma, M., Zhou, H., Dai, S., & Zhu, H. (2019). A PV power interval forecasting based on seasonal model and nonparametric estimation algorithm. Solar Energy, 184, 515–526.

    Google Scholar 

  • Heidari, A. A., Abbaspour, R. A., & Jordehi, A. R. (2017). An efficient chaotic water cycle algorithm for optimization tasks. Neural Computing and Applications, 28(1), 57–85.

    Google Scholar 

  • Hong, Y. Y., Yu, T. H., & Liu, C. Y. (2013). Hour-ahead wind speed and power forecasting using empirical mode decomposition. Energies, 6(12), 6137–6152.

    Google Scholar 

  • https://www.nrel.gov/grid/solar-power-data.html, Accessed on 15th January 2019.

  • Hu, J., & Wang, J. (2015). Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression. Energy, 93, 1456–1466.

    Google Scholar 

  • Huang, G. B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.

    Google Scholar 

  • Huang, C. M., Chen, S. J., Yang, S. P., & Kuo, C. J. (2015). One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecasting models. IET Generation, Transmission and Distribution, 9(14), 1874–1882.

    Google Scholar 

  • Huang, R., Huang, T., Gadh, R., & Li, N. (2012, November). Solar generation prediction using the ARMA model in a laboratory-level micro-grid. In 2012 IEEE third international conference on smart grid communications (SmartGridComm) (pp. 528–533). IEEE.

  • Huang, G. B., Wang, D. H., & Lan, Y. (2011a). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122.

    Google Scholar 

  • Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2011b). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.

    Google Scholar 

  • Hwang, J. G., & Ding, A. A. (1997). Prediction intervals for artificial neural networks. Journal of the American Statistical Association, 92(438), 748–757.

    Google Scholar 

  • Izgi, E., Öztopal, A., Yerli, B., Kaymak, M. K., & Åžahin, A. D. (2012). Short–mid-term solar power prediction by using artificial neural networks. Solar Energy, 86(2), 725–733.

    Google Scholar 

  • Kavasseri, R. G., & Seetharaman, K. (2009). Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, 34(5), 1388–1393.

    Google Scholar 

  • Kavousi-Fard, A., Khosravi, A., & Nahavandi, S. (2015). A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Transactions on Power Systems, 31(1), 18–26.

    Google Scholar 

  • Khosravi, A., Nahavandi, S., Creighton, D., & Atiya, A. F. (2010). Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Transactions on Neural Networks, 22(3), 337–346.

    Google Scholar 

  • Khosravi, A., Nahavandi, S., Srinivasan, D., & Khosravi, R. (2014). Constructing optimal prediction intervals by using neural networks and bootstrap method. IEEE Transactions on Neural Networks and Learning Systems, 26(8), 1810–1815.

    Google Scholar 

  • Lee, W., Kim, K., Park, J., Kim, J., & Kim, Y. (2018). Forecasting solar power using long-short term memory and convolutional neural networks. IEEE Access, 6, 73068–73080.

    Google Scholar 

  • Li, K., Wang, R., Lei, H., Zhang, T., Liu, Y., & Zheng, X. (2018). Interval prediction of solar power using an improved bootstrap method. Solar Energy, 159, 97–112.

    Google Scholar 

  • Liu, H., Chen, C., Tian, H. Q., & Li, Y. F. (2012). A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy, 48, 545–556.

    Google Scholar 

  • Liu, D., Niu, D., Wang, H., & Fan, L. (2014). Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renewable Energy, 62, 592–597.

    Google Scholar 

  • Liu, H., Tian, H., Liang, X., & Li, Y. (2015). New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renewable Energy, 83, 1066–1075.

    Google Scholar 

  • Martín, L., Zarzalejo, L. F., Polo, J., Navarro, A., Marchante, R., & Cony, M. (2010). Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning. Solar Energy, 84(10), 1772–1781.

    Google Scholar 

  • Naik, J., Satapathy, P., & Dash, P. K. (2018). Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression. Applied Soft Computing, 70, 1167–1188.

    Google Scholar 

  • Ni, Q., Zhuang, S., Sheng, H., Kang, G., & Xiao, J. (2017). An ensemble prediction intervals approach for short-term PV power forecasting. Solar Energy, 155, 1072–1083.

    Google Scholar 

  • Rana, M., Koprinska, I., & Agelidis, V. G. (2015). 2D-interval forecasts for solar power production. Solar Energy, 122, 191–203.

    Google Scholar 

  • Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. (2014a). Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowledge-Based Systems, 56, 226–239.

    Google Scholar 

  • Ren, Y., Suganthan, P. N., & Srikanth, N. (2014b). A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Transactions on Neural Networks and Learning Systems, 27(8), 1793–1798.

    Google Scholar 

  • Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436.

    Google Scholar 

  • Shi, J., Lee, W. J., Liu, Y., Yang, Y., & Wang, P. (2012). Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, 48(3), 1064–1069.

    Google Scholar 

  • Shrivastava, N. A., Khosravi, A., & Panigrahi, B. K. (2015). Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Transactions on Industrial Informatics, 11(2), 322–331.

    Google Scholar 

  • Steffel, S. J., Caroselli, P. R., Dinkel, A. M., Liu, J. Q., Sackey, R. N., & Vadhar, N. R. (2012). Integrating solar generation on the electric distribution grid. IEEE Transactions on Smart Grid, 3(2), 878–886.

    Google Scholar 

  • Tascikaraoglu, A., Uzunoglu, M., & Vural, B. (2012). The assessment of the contribution of short- term wind power predictions to the efficiency of stand-alone hybrid systems. Applied Energy, 94, 156–165.

    Google Scholar 

  • Torres, J. L., Garcia, A., De Blas, M., & De Francisco, A. (2005). Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy, 79(1), 65–77.

    Google Scholar 

  • Ueckerdt, F., Brecha, R., & Luderer, G. (2015). Analyzing major challenges of wind and solar variability in power systems. Renewable Energy, 81, 1–10.

    Google Scholar 

  • Van der Meer, D. W., Shepero, M., Svensson, A., Widén, J., & Munkhammar, J. (2018). Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian processes. Applied Energy, 213, 195–207.

    Google Scholar 

  • Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., et al. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569–582.

    Google Scholar 

  • Wan, C., Lin, J., Song, Y., Xu, Z., & Yang, G. (2016). Probabilistic forecasting of photovoltaic generation: An efficient statistical approach. IEEE Transactions on Power Systems, 32(3), 2471–2472.

    Google Scholar 

  • Wan, C., Xu, Z., Wang, Y., Dong, Z. Y., & Wong, K. P. (2013). A hybrid approach for probabilistic forecasting of electricity price. IEEE Transactions on Smart Grid, 5(1), 463–470.

    Google Scholar 

  • Wang, K., Qi, X., & Liu, H. (2019). A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Applied Energy, 251, 113315.

    Google Scholar 

  • Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using artificial neural network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772–781.

    Google Scholar 

  • Yang, D., Gu, C., Dong, Z., Jirutitijaroen, P., Chen, N., & Walsh, W. M. (2013). Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging. Renewable Energy, 60, 235–245.

    Google Scholar 

  • Yang, H. T., Huang, C. M., Huang, Y. C., & Pai, Y. S. (2014). A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE Transactions on Sustainable Energy, 5(3), 917–926.

    Google Scholar 

  • Yona, A., Senjyu, T., Funabashi, T., & Kim, C. H. (2013). Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Transactions on Sustainable Energy, 4(2), 527–533.

    Google Scholar 

  • Zhang, R., Dong, Z. Y., Xu, Y., Meng, K., & Wong, K. P. (2013). Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine. IET Generation, Transmission and Distribution, 7(4), 391–397.

    Google Scholar 

  • Zhang, G., Wu, Y., Wong, K. P., Xu, Z., Dong, Z. Y., & Iu, H. H. C. (2014). An advanced approach for construction of optimal wind power prediction intervals. IEEE Transactions on Power Systems, 30(5), 2706–2715.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeeta Bisoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P.K., Majumder, I., Nayak, N. et al. Point and Interval Solar Power Forecasting Using Hybrid Empirical Wavelet Transform and Robust Wavelet Kernel Ridge Regression. Nat Resour Res 29, 2813–2841 (2020). https://doi.org/10.1007/s11053-020-09630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09630-6

Keywords

Navigation