Skip to main content

Advertisement

Log in

Nicotine Decreases Beta-Amyloid Through Regulating BACE1 Transcription in SH-EP1-α4β2 nAChR-APP695 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects the elderly population. Deposition of beta-amyloid (Aβ) in the brain is a hallmark of AD pathology. In our previous study, we have constructed a cell line expressing human APP695 (hAPP695) in SH-EP1 cells stably transfected with human nicotinic receptor (nAChR) α4 subunit and β2 subunit gene. In present study, we found that activation of α4β2 nAChR by nicotine and epibatidine decreased secreted Aβ level in the cell line and hippocampal neurons, but had no effects on full-length APP695 and sAPP-α. Nicotine also decreases BACE1 and PSEN1 expression, as well as ERK1 and NFκB P65 subunit expression in the cell line. Furthermore, BACE1 promoter activity is, but PSEN1 not, decreased by nicotine in the cell line. All the results suggest that activation of α4β2 nAChR decreases Aβ through regulating BACE1 transcription by ERK1-NFκB pathway. Additionally, analysis of BACE1 promoter activity by dual-luciferase reporter assay may be useful for drug screening as a high throughput method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  PubMed  CAS  Google Scholar 

  2. Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106:4012–4017

    Article  PubMed  CAS  Google Scholar 

  3. Masters CL, Simms G, Weinman NA et al (1985) Amyloid plaque core protein in Alzheimer diseaseand Down syndrome. Proc Natl Acad Sci USA 82(12):4245–4249

    Article  PubMed  CAS  Google Scholar 

  4. Turner PR, O’Connor K, Tate WP et al (2009) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32

    Article  Google Scholar 

  5. Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23(1–2):105–114

    Article  PubMed  CAS  Google Scholar 

  6. Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  PubMed  CAS  Google Scholar 

  7. Yang LB, Lindholm K, Yan R et al (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9:3–4

    Article  PubMed  CAS  Google Scholar 

  8. Zhao J, Fu Y, Yasvoina M et al (2007) Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27:3639–3649

    Article  PubMed  CAS  Google Scholar 

  9. Zhang XM, Cai Y, Xiong K et al (2010) β-Secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci 30:2271–2283

    Article  Google Scholar 

  10. Stockley JH, O’Neill C (2008) Understanding BACE1: essential protease for amyloid-beta production in Alzheimer’s disease. Cell Mol Life Sci 65(20):3265–3289

    Article  PubMed  CAS  Google Scholar 

  11. Zhang LJ, Xiao Y, Qi XL et al (2010) Cholinesterase activity and mRNA level of nicotinic acetylcholine receptors (alpha4 and beta2 Subunits) in blood of elderly Chinese diagnosed as Alzheimer’s disease. J Alzheimers Dis 19(3):849–858

    PubMed  CAS  Google Scholar 

  12. Arneric SP, Arneric SP, Holladay M et al (2007) Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol 74(8):1092–1101

    Article  PubMed  CAS  Google Scholar 

  13. Gotti C, Riganti L, Vailati S et al (2006) Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 12(4):407–428

    Article  PubMed  CAS  Google Scholar 

  14. O’Neill MJ, Murray TK, Lakics V et al (2002) The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord 1:399–411

    Article  PubMed  Google Scholar 

  15. Cincotta SL, Yorek MS, Moschak TM et al (2008) Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction. Curr Opin Investig Drugs 9(1):47–56

    PubMed  CAS  Google Scholar 

  16. Nitsch RM, Slack BE, Wurtman RJ et al (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080):304–307

    Article  PubMed  CAS  Google Scholar 

  17. Nie H, Li Z, Lukas RJ et al (2008) Construction of SH-EP1-alpha4beta2-hAPP695 cell line and effects of nicotinic agonists on Beta-amyloid in the cells. Cell Mol Neurobiol 28(1):103–112

    Article  PubMed  Google Scholar 

  18. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415

    Article  PubMed  CAS  Google Scholar 

  19. Ge YW, Ghosh C, Song W et al (2004) Mechanism of promoter activity of the Beta-amyloid precursor protein gene in different cell lines: identification of a specific 30 bp fragment in the proximal promoter region. J Neurochem 90(6):1432–1444

    Article  PubMed  CAS  Google Scholar 

  20. Caterina MH, Rakez K, Hui Z et al (2010) Loss of α7 Nicotinic Receptors Enhancesβ-Amyloid Oligomer Accumulation, Exacerbating Early-Stage Decline and Septohippocampal Pathology in a Mouse of Alzheimer’s Disease. J Neurosci 30(7):2442–2453

    Article  Google Scholar 

  21. Caccamo A, Fisher A, LaFerla FM (2009) M1 agonists as a potential disease-modifying therapy for Alzheimer’s disease. Curr Alzheimer Res 6(2):112–117

    Article  PubMed  CAS  Google Scholar 

  22. Neugroschl J, Sano M (2010) Current treatment and recent clinical research in Alzheimer’s disease. Mt Sinai J Med 77(1):3–16

    Article  PubMed  Google Scholar 

  23. Paterson D, Nordberg A et al (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  CAS  Google Scholar 

  24. Cincotta SL, Yorek MS, Moschak TM et al (2008) Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction. Curr Opin Investig Drugs 9:47–56

    PubMed  CAS  Google Scholar 

  25. Tamagno E, Guglielmotto M, Aragno M et al (2008) Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the Beta-amyloid precursor protein. J Neurochem 104(3):683–695

    PubMed  CAS  Google Scholar 

  26. Tomizawa M, Casida JE (2002) Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E–115 cells. Toxicol Appl Pharmacol 184(3):180–186

    Article  PubMed  CAS  Google Scholar 

  27. Chen RJ, Ho YS, Guo HR et al (2010) Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci 115(1):118–130

    Article  PubMed  CAS  Google Scholar 

  28. Rahman A, Anwar KN, Minhajuddin M et al (2004) cAMP Targeting of p38 MAP Kinase Inhibits Thrombin-induced NF-{kappa}B Activation and ICAM-1 Expression in Endothelial Cells. Am J Physiol Lung Cell Mol Physiol 287(5):L1017–L1024

    Article  PubMed  CAS  Google Scholar 

  29. Memet S (2006) NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 72(9):1180–1195

    Article  PubMed  CAS  Google Scholar 

  30. Bourne KZ, Ferrari DC, Lange-Dohna C et al (2007) Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to Beta-amyloid peptides. J Neurosci Res 85(6):1194–1204

    Article  PubMed  CAS  Google Scholar 

  31. Tamagno E, Guglielmotto M, Giliberto L et al (2009) JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol Aging 30(10):1563–1573

    Article  PubMed  CAS  Google Scholar 

  32. Virginie BP, Jean S, Steffen R et al (2008) NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42. J Biol Chem 283(15):10037–10047

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from the Shanghai Committee of Science and Technology, China (Grant No. 08431900600), the grant from the National Comprehensive Technology Platforms for Innovative Drug R&D, China (2009ZX09301–007), the national natural science foundation of China (No. 30572179, 30672443), and financial support from China postdoctoral science foundation(20090450709). We thank Dr. Ronald J. Lukas for SH-EP1 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, HZ., Li, ZQ., Yan, QX. et al. Nicotine Decreases Beta-Amyloid Through Regulating BACE1 Transcription in SH-EP1-α4β2 nAChR-APP695 Cells. Neurochem Res 36, 904–912 (2011). https://doi.org/10.1007/s11064-011-0420-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0420-7

Keywords

Navigation