Skip to main content
Log in

Assessment of the instability hazard of a granite boulder

  • Original paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper aims to assess the instability hazard of a granite boulder. The procedure was first to consider the geological setting and geomorphologic features of the boulder in relation to typical granite landscape forms. Climatic and seismic data were next obtained from different sources, and geomechanical parameters were measured in situ and in the laboratory, with terrestrial laser scanning techniques used to measure shape and volume and to conduct a detailed survey of the boulder. Different analytical approaches were then applied to the calculation of boulder safety factors against sliding and toppling. Since the boulder was considered to be unstable in the worst possible scenario, a particle code approach was used to determine its fall trajectory, calculate the final run out of the block, and assess the risk for houses located at the foot of the slope. Finally, conclusions were drawn regarding the instability hazard, and recommendations were made in regard to definitively stabilizing the granite boulder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agliardi F, Crosta GB (2003) High-resolution three-dimensional numerical modeling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Alejano, LR (2006) Una metodología empírica para estimar las propiedades resistentes de los jabres o granitos alterados. Ingeniería del Terreno. (An empirical method to estimate the strength characteristics of highly and completely decomposed granites). Ingeo Ter 8. pp 39–64, U.D. Proyectos, E.T.S.I. Minas-U.P.M. Madrid

  • Alejano LR, Alonso E (2005) Application of the shear and tensile strength reduction technique to obtain factor of safety of toppling and footwall rock slopes. Proceedings of the ISRM Conference on Rock Mechanics. EUROCK 2005. Brno, Tzchec Republic. Edit Konecky. Taylord & Francis

  • Alejano LR, Gómez Márquez I, Pons B, Bastante FG, Alonso E (2006) Stability analysis of a potentially toppling over-tilted slope in granite. 4th Asian Rock Mechanics Symposium. Singapur, pp 8–12

  • Alejano LR, Pons B, Bastante FG, Alonso E, Stockhausen H (2007) Rockfall control in quarrying by means of slope geometry design. Int J Rock Mech Min Sci 44:903–921

    Article  Google Scholar 

  • Alejano LR, Stockhausen H, Bastante FG, Alonso E, Ramírez-Oyanguren P (2008) ROFRAQ: an empirical method to estimate the risk of accidents due to rockfalls in quarries. Int J Rock Mech Min Sci 45:1252–1272

    Article  Google Scholar 

  • Ayala-Carcedo FJ, Cubillo-Nielsen S, Álvarez A, Dominguez MJ, Laín L, Laín R, Ortiz G (2003) Large-scale rockfall reach susceptibility maps in La Cabrera Sierra (Madrid) performed with GIS and dynamic analysis at 1:5,000. Nat Haz 30:325–340

    Article  Google Scholar 

  • Aydin A (2006) Stability of saprolitic slopes: nature and role of field scales heterogeneities. Nat Haz Earth Syst Sci 6:89–96

    Google Scholar 

  • Azzoni A, de Freitas MH (1995) Prediction of rockfall trajectories with the aid of in situ test. Rock Mech Rock Eng 28(2):111–124

    Article  Google Scholar 

  • Badger TC, Lowell S (1992) Rockfall control Washington State. In: Rockfall prediction and control and landslide case histories. Transportation Research Record, Natural Research Council, Washington, No. 1342, pp 14–19

  • Barton N (1973) Review of a new shear strength criterion for rock joints. Eng Geol 7:287–332

    Article  Google Scholar 

  • Barton N (1976) The shear strength of rock and rock joints. Int J Rock Mech Min Sci Geomech Abstr 13:255–279

    Article  Google Scholar 

  • Barton N, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. Proc Int Soc Rock Mech Symp rock joints. Loen (Norway). pp 603–610

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54

    Article  Google Scholar 

  • BOE (Spanish Official State Bulletin) (2002) REAL DECRETO 997/2002, de 27 de septiembre, por el que se aprueba la norma de construcción sismorresistente (Spanish standard for seismic protection)

  • Brown ET (ed) (1981) Rock characterization, testing and monitoring. Pergamon Press, New York 211 pp

    Google Scholar 

  • Bunce CM (1994) Risk analysis for rockfall on highways. M.Sc Thesis, Department of Civil Engineering in the University of Alberta, Canada

  • Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77

    Article  Google Scholar 

  • Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech Rock Eng 36:383–408

    Article  Google Scholar 

  • Dussage-Peisser C, Helmsteter A, Grasso JR, Hantz D, Desverreaux P, Jeannin M, Giraud A (2002) Probabilistic approach to rockfall hazard assessment: potential of historical data analysis. Nat Haz Earth Syst Sci 2:15–26

    Google Scholar 

  • Ericson K (2004) Geomorphological surfaces of different age and origin in granite landscapes: an evaluation of the Schmidt hammer test. Earth Surf Process Landf 29:495–509

    Article  Google Scholar 

  • GCO (1987) Guide to site investigation (Geoguide 2), Geotechnical Control Office, Hong Kong SAR

  • Giani GP (1992) Rock slope stability analysis. Chap. 7. Balkema, Rotterdam, pp 191–208

  • Giani GP, Giacomini A, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rockfall analysis and protection work design. Rock Mech Rock Eng 37(5):369–389

    Article  Google Scholar 

  • Goodman RE, Bray JW (1977) Toppling of rock slopes. Proceedings of the Special Conference on Rock Engineering for Foundations and Slopes. Vol. 2, pp 201–234. Boulder, Colorado, EEUU. ASCE

  • Guzzetti F, Reichenbach P, Wiezcorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Haz Earth Syst Sci 3:491–503

    Google Scholar 

  • Hoek E, Bray JW (1973) Rock slope engineering. Chapman & Hall, London

    Google Scholar 

  • Hoek ET (2006). Rock engineering course notes. Chap. 7: probabilistic approach to rock slope stability and Chap. 9: analysis of rockfall hazards. http://www.rocscience.com/roc/Hoek/Hoeknotes.html. Last consulted: 15 Apr 2006

  • Hungr O, Evans SG (1989) Engineering aspects of rockfall hazard in Canada. Geological Survey of Canada, Canada

    Google Scholar 

  • Itasca (2003) User manual for UDEC, Version 3.1. Itasca Consulting Group Inc, Minnesota

    Google Scholar 

  • ITGE (1991) (Geology Map of Spain) 1:50,000. Hoja de Vigo (123). ITGE, 105 pp + 1 map

  • Le Pera E, Sorriso-Vallor M (2000) Weathering and morphogenesis in a Mediterranean climate, Calabria, Italy. Geomorphology 34:251–270

    Article  Google Scholar 

  • Mabbutt JA (1961) Basal surface or weathering front. Proc Geol As 72:357–358

    Article  Google Scholar 

  • Migon P (2006) Granite landscapes of the world. Series: geomorphological landscapes of the world. Oxford University Press, Oxford

    Google Scholar 

  • Ollier CD (1971) Causes of spheroidal weathering. Earth Sci Rev 7:127–141

    Article  Google Scholar 

  • Ollier CD (1978) Induced fracture and granite landforms. Z Geomorphol N F 22:249–257

    Google Scholar 

  • Ollier CD (1984) Weathering. Longman, London 270 pp

    Google Scholar 

  • Pfeiffer T, Bowen T (1989) Computer simulation of rockfall. As Eng Geol Bull XXVI(1):135–146

    Google Scholar 

  • Pierson LA, Davis SA, Van Vickle (1990) Rockfall Hazard Rating System Implementation Manual. Edit. Federal Highway Administrations, report FHWA-OR-E.G-90-01, U.S., Washington D.C., Federal Highway Administration, Department of Transportation

  • Pierson LA, Gullixson CF, Chassie RG (2001) Rockfall catchment area design guide. Final Report SPR-(032) Metric Edition. Oregon Department of Transportation & FHWA. Available from: http://www.oregon.gov/ODOT/TD/TP_RES/docs/Reports/RokfallCatchAreaDesMetric.pdfLast consulted: 10 Dec 2007

  • Piteau DR, Clayton R (1976) Computer rockfall model. In: Proceedings of the Meeting on Rockfall Dynamics and Protective Works Effectiveness, Bergamo, Italy, ISMES Publication No. 90, pp 123–125

  • Ritchie AM (1963) The evaluation of rockfall and its control. Highw Res Rec 17:13–28

    Google Scholar 

  • ROCSCIENCE (2004) RocFall user manual. Statistical analysis of Rockfalls. Web page: http://www.rocscience.com/roc/software/RocFall.htm

  • Sagaseta C (1986) On the modes of instability of a rigid block on an inclined plane. Rock Mech Rock Eng 19:261–266

    Article  Google Scholar 

  • Stimpson B (1981) A suggested technique for determining the basic friction angle of rock surfaces using core. Int J Rock Mech Min Sci Geomech Abstr 18:63–65

    Google Scholar 

  • Taboada J, Alejano LR, García-Bastante F, Ordóñez C (2005) Explotación total de una cantera de granito ornamental. Materiales de construcción, Vol. 42/4, pp 481–507. CSIC

  • Twindale CR (1982) Granite landforms. Elsevier, Amsterdam

    Google Scholar 

  • Twindale CR (1989) The antiquity of the Australian landscape. Cadernos do Laboratorio Xeolóxico de Laxe: Revista de xeoloxía galega e do hercínico peninsular, ISSN 0213-4497, N§ 13, 1989 (Exemplar dedicado a: Xeomorfoloxia granitica). 13:7–30

  • Vidal Romaní JR (1989) Granite geomorphology in Galicia (NW Spain). Cadernos do Laboratorio Xeolóxico de Laxe: Revista de xeoloxía galega e do hercínico peninsular, ISSN 0213-4497, N§ 13, 1989 (Exemplar dedicado a: Xeomorfoloxia granitica). 13:89–163

  • Wiezcorek GF, Jäger S (1996) Triggering mechanisms and depositional rates at the Yosemite Valley, California. Geomorphology 5:17–31

    Google Scholar 

Download references

Acknowledgments

The authors thank the Autonomous Government of Galicia (Spain) for financial support for this study, conducted as part of a research project with reference number INCITE08-PXIB304076PR. Ailish M.J. Maher provided assistance with English usage in a version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Alejano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alejano, L.R., Ordóñez, C., Armesto, J. et al. Assessment of the instability hazard of a granite boulder. Nat Hazards 53, 77–95 (2010). https://doi.org/10.1007/s11069-009-9413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-009-9413-0

Keywords

Navigation