Skip to main content

Advertisement

Log in

Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Mapping of erosion risk areas is an important tool for the planning of natural resources management, allowing researchers to propose the modification of land use properly and implement more sustainable long-term management strategies. The objective of this study was to assess and identify critical sub-catchments for soil conservation management using the USLE, GIS, and remote sensing techniques. The Tapacurá catchment is one of the planning units for water resource management of the Recife Metropolitan Region. Maps of the erosivity (R), erodibility (K), slope (LS), cover-management (C), and support practice (P) factors were derived from the climate database, digital elevation model, and soil and land-use maps. In order to validate the simulation process, total sediment delivery ratio was estimated. The results showed a mean sediment delivery ratio (SDR) of around 11.5 % and a calculated mean sediment yield of 0.108 t ha−1 year−1, which is close to the observed one, 0.169 t ha−1 year−1. The obtained soil loss map could be considered as a useful tool for environmental monitoring and water resources management. The methodology applied showed acceptable precision and allowed the identification of the most susceptible areas to soil erosion by water, constituting an important predictive tool for soil and environmental management in this region, which is highly relevant for the prediction of varying development scenarios for Tapacurá catchment. This approach can be applied to other areas for simple and reliable identification of critical areas of soil erosion in catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banasik K, Barszcz M, Brański J (2005) Major components of a sediment budget for four river catchments in Poland. IAHS Publ 292:32–36

    Google Scholar 

  • Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River Basin. Brazil using distributed modelling. Catena 79(1):49–59. doi:10.1016/j.catena.2009.05.010

    Article  Google Scholar 

  • Bewket W, Teferi E (2009) Assessment of soil erosion hazard and prioritization for treatment at the watershed level: case study in the Chemoga watershed, Blue Nile Basin, Ethiopia. Land Degrad Develop 20(7):609–622. doi:10.1002/ldr.944

    Article  Google Scholar 

  • Brazilian National Water Agency (2010) HIDROWEB Hydrological data. http://hidroweb.ana.gov.br. Accessed 26 July 2010

  • Da Silva AM (2004) Rainfall erosivity map for Brazil. Catena 57(2):251–259. doi:10.1016/j.catena.2003.11.006

    Article  Google Scholar 

  • Da Silva AM, Casatti L, Álvares CA, Leite AM, Martinelli LA, Durrant SF (2007) Soil loss risk and habitat quality in streams of a meso-scale river basin. Scientia Agrícola 64(4):336–343. doi:10.1590/S0103-90162007000400004

    Google Scholar 

  • Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of North Eastern India using USLE, GIS and remote sensing. Water Resour Manage 22(12):1783–1798. doi:10.1007/s11269-008-9253-9

    Article  Google Scholar 

  • De Moor JJW, Verstraeten G (2008) Alluvial and colluvial sediment storage in the Geul River catchment (The Netherlands)—combining field and modelling data to construct a Late Holocene sediment budget. Geomorphology 95(4):487–503. doi:10.1016/j.geomorph.2007.07.012

    Article  Google Scholar 

  • Erdogan EH, Erpul G, Bayramin I (2007) Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. Environ Monit Assess 131(2):153–161. doi:10.1007/s10661-006-9464-6

    Article  Google Scholar 

  • FAO/UNESCO (1988) Soil map of the world, revised legend. World soil resources. Rep. 60. FAO, Rome

  • Farinasso M, Carvalho Júnior OA, Guimarães RF, Gomes RAT, Ramos VM (2006) Qualitative assessment of the potential for erosion in large areas by USLE. Braz J Geomorphol 7(2):73–85 (in Portuguese)

    Google Scholar 

  • Fistikoglu O, Harmancioglu NB (2002) Integration of GIS and USLE in assessment of soil erosion. Water Resour Manag 16(6):447–467. doi:10.1023/A:1022282125760

    Article  Google Scholar 

  • Hantush MM, Kalin L (2005) Uncertainty and sensitivity analysis of runoff and sediment yield in a small agricultural watershed with Kineros-2. Hydrol Sci J 50(6):1151–1172. doi:10.1623/hysj.2005.50.6.1151

    Article  Google Scholar 

  • Hrissanthou V (2005) Estimate of sediment yield in a basin without sediment data. Catena 64(4):333–347. doi:10.1016/j.catena.2005.08.014

    Article  Google Scholar 

  • Irvem A, Topaloglu F, Uygu V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336(1):30–37. doi:10.1016/j.jhydrol.2006.12.009

    Article  Google Scholar 

  • Jain MK, Das D (2009) Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour Manag 24(10):2091–2112. doi:10.1007/s11269-009-9540-0

    Article  Google Scholar 

  • Kalin L, Hantush MH (2006) Comparative assessment of two distributed watershed models with application to a small watershed. Hydrol Process 20(11):2285–2307. doi:10.1002/hyp.6063

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Willey, New York, p 724p

    Google Scholar 

  • Moltz HLN, Rast W, Lopes VL, Ventura SJ (2011) Use of spatial surrogates to assess the potential for non-point source pollution in large watersheds. Lakes Reserv Rese Manag 16(1):3–13. doi:10.1111/j.1440-1770.2011.00460.x

    Article  Google Scholar 

  • Moore ID, Burch G (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci Soc Amer J 50(5):1294–1298. doi:10.2136/sssaj1986.03615995005000050042x

    Article  Google Scholar 

  • Ozcan AU, Erpul G, Basaran M, Erdogan HE (2008) Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass–Çankiri, Turkey. Environ Geol 53(8):1731–1741. doi:10.1007/s00254-007-0779-6

    Article  Google Scholar 

  • Pandey A, Chowdary VM, Mal BC (2007) Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour Manag 21(4):729–746. doi:10.1007/s11269-006-9061-z

    Article  Google Scholar 

  • Santos CAG, Srinivasan VS, Suzuki K, Watanabe M (2003) Application of an optimization technique to a physically based erosion model. Hydrol Process 17(10):989–1003. doi:10.1002/hyp.1176

    Article  Google Scholar 

  • Santos CAG, Freire PKMM, Silva RM, Arruda PM, Mishra SK (2011) Influence of the catchment discretization on the optimization of runoff-erosion modelling. J Urb Environ Eng 5(2):91–102. doi:10.4090/juee.2011.v5n2.091102

    Article  Google Scholar 

  • Silva AM, Alvares CA (2005) Information gathering and structuring of a database on erodibility of soil in São Paulo state. Geociências 24(1):33–41 (in Portuguese)

    Google Scholar 

  • Silva RM, Santos CAG (2008) Sediment yield prediction through the use of a runoff-erosion model coupled to a GIS. Brazil J Agricul Environ Eng 12(5):520–526. doi:10.1590/S1415-43662008000500013 (in Portuguese)

    Google Scholar 

  • Silva AB, Resende M, Sousa AR, Margolis E (1999) Soil mobilization, erosion and corn and bean yields in a regosol on the Pernambuco state dry area. Pesq Agropec Bras 34(2):299–307. doi:10.1590/S0100-204X1999000200018

    Article  Google Scholar 

  • Silva RM, Santos CAG, Silva LP (2007) Evaluation of soil loss in Guaraíra basin by GIS and remote sensing based model. J Urb Environ Engin 1(2):44–52. doi:10.4090/juee.2007.v1n2.044052

    Article  Google Scholar 

  • Silva RM, Paiva FML, Santos CAG (2009) Evaluation of soil erodibility and soil loss in Capiá basin based on geographical information system and remote sensing. Brazil J Phys Geogr 2(1):26–40 (in Portuguese)

    Google Scholar 

  • Silva RM, Santos CAG, Montenegro SMGL, Silva LP (2010) Spatial analysis of vegetal cover and sediment yield in Tapacurá river catchment based on remote sensing and GIS. Land Reclam 42(1):5–16. doi:10.2478/v10060-008-0059-5

    Google Scholar 

  • Tripathi MP, Panda RK, Raghuwanshi NS (2003) Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model. Biosyst Eng 85(3):365–379. doi:10.1016/S1537-5110(03)00066-7

    Article  Google Scholar 

  • Van Dijk PM, Kwaad FJPM (1998) Modelling suspended sediment supply to the River Rhine drainage network: a methodological study. IAHS Publ 249:165–176

    Google Scholar 

  • Vemu S, Pinnamaneni UB (2011) Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment. Nat Hazard 57(2):1–17. doi:10.1007/s11069-011-9832-6

    Google Scholar 

  • Verstraeten G, Rommens T, Peeters I, Poesen J, Govers G, Lang A (2009) A temporarily changing Holocene sediment budget for a loess-covered catchment (central Belgium). Geomorph 108(1):24–34. doi:10.1016/j.geomorph.2007.03.022

    Article  Google Scholar 

  • Wijesekara S, Samarakoon L (2001) Extraction of parameters and modelling soil erosion using GIS in a grid environment. Proceedings of XXII Asian conference on remote sensing, Singapore

  • Winchell MF, Jackson SH, Wadley AM, Srinivasan R (2008) Extension and validation of a geographic information system-based method for calculating the revised universal soil loss equation length-slope factor for erosion risk assessments in large watersheds. J Soil Water Conserv 63(1):105–111. doi:10.2489/jswc.63.3.105

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. Agriculture handbook science and education, vol 357. Admin. U.S. Department of Agriculture, Washington, p 58

  • Zhang Y, Degroote J, Wolter C, Sugumaran R (2009) Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degrad Dev 20(1):84–91. doi:10.1002/ldr.893

    Article  Google Scholar 

Download references

Acknowledgments

The authors are supported by CNPq, FACEPE, and MCT/CT-HIDRO/FINEP. ANA (Brazilian National Water Agency) is acknowledged for providing the database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Augusto Guimarães Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, R.M., Montenegro, S.M.G.L. & Santos, C.A.G. Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment. Nat Hazards 62, 953–970 (2012). https://doi.org/10.1007/s11069-012-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0128-2

Keywords

Navigation