Skip to main content
Log in

Engineering geological analysis of municipal solid waste landfill stability

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Sanitary landfills are the main disposal method of municipal solid waste (MSW). There are multiple engineering issues in the construction and operation of landfills. Because the engineering properties of MSW are complicated and landfills can easily become unstable under the influence of external factors, landfill stability is the most significant engineering issue in landfill operation. This paper presents a review of engineering geological analyses of municipal solid waste landfill stability. Selected case histories involving instability of landfills are discussed based on published research, and the instabilities and their likely causes are examined. The concept of landfills as geologic bodies is introduced, and the factors that affect landfill stability are discussed, based on the engineering properties of the waste, the structural features of the landfill body, and dynamic engineering and geological process such as earthquakes, rainfall, and human engineering activity. Finally, suggestions for landfill operation based on the reviewed case studies and the analysis are presented and a summary of the factors influencing landfill instability is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(based on Chen et al. 2012)

Similar content being viewed by others

References

  • Athanasopoulos G, Vlachakis V, Zekkos D et al (2013) The December 29th 2010 Xerolakka Municipal Solid Waste landfill failure. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, pp 309–312

  • Bell FG (2007) Engineering geology. Butterwotth-Heinemann, Oxford

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York

    Google Scholar 

  • Blight GE (2004) A flow failure in a municipal solid waste landfill—the failure at Bulbul, South Africa. In: Advances in geotechnical engineering: The Skempton conference. Thomas Telford, pp 777–788

  • Blight GE (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res 26(5):448–463

    Article  Google Scholar 

  • Blight GE, Fourie AB (2005) Catastrophe revisited—disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23(3):219–248

    Article  Google Scholar 

  • Chang M (2005) Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding—block mechanism. Comput Geotech 32(8):587–599

    Article  Google Scholar 

  • Chen YM, Wang LZ, Hu YY et al (2000) Stability analysis of a solid waste landfill slope. China Civ Eng J 33(3):92–97 (in Chinese)

    Google Scholar 

  • Chen YM, Shi JY, Zhu W et al (2012) A review of geoenvironmental engineering. China Civ Eng J 45:165–182 (in Chinese)

    Google Scholar 

  • Choudhury D, Savoikar P (2009a) Equivalent-linear seismic analyses of MSW landfills using DEEPSOIL. Eng Geol 107:98–108

    Article  Google Scholar 

  • Choudhury D, Savoikar P (2009b) Simplified method to characterize municipal solid waste properties under seismic conditions. Waste Manag 29(2):924–933

    Article  Google Scholar 

  • Choudhury D, Savoikar P (2011a) Seismic stability analysis of expanded MSW landfills using pseudo-static limit equilibrium method. Waste Manag Res 29(2):135–145

    Article  Google Scholar 

  • Choudhury D, Savoikar P (2011b) Seismic yield accelerations of MSW landfills by pseudo-dynamic approach. Nat Hazards 56(1):275–297

    Article  Google Scholar 

  • Chugh AK, Stark TD, DeJong KA (2007) Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio. USA. Can Geotech J 44(1):33–53

    Article  Google Scholar 

  • Dai Z, Huang Y (2016) A three-dimensional model for flow slides in municipal solid waste landfills using smoothed particle hydrodynamics. Environ Earth Sci 75(2):1–15

    Article  Google Scholar 

  • Dai Z, Huang Y, Jiang F et al (2016) Modeling the flow behavior of a simulated municipal solid waste. Bull Eng Geol Environ 75:275–291

    Article  Google Scholar 

  • Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr 23(3):205–233

    Article  Google Scholar 

  • Eid HT, Stark TD, Evans WD et al (2000) Municipal solid waste slope failure I: waste and foundation soil properties. J Geotech Geoenviron Eng 126(5):397–407

    Article  Google Scholar 

  • Eklund B, Anderson EP, Walker BL et al (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32(15):2233–2237

    Article  Google Scholar 

  • Gabr MA, Valero SN (1995) Geotechnical properties of municipal solid waste. ASTM Geotech Test J 18(2):241–251

    Article  Google Scholar 

  • Gabr MA, Hossain MS, Barlaz MA (2007) Shear strength parameters of municipal solid waste with leachate recirculation. J Geotech Geoenviron Eng 133(4):478–484

    Article  Google Scholar 

  • Giri RK, Reddy KR (2014) Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions. Waste Manag Res 32(3):186–197

    Article  Google Scholar 

  • Gomes CC, Lopes MDLC (2012) Characterisation of municipal solid waste physical properties and their evolution with age. Proc ICE-Geotech Eng 165(1):23–34

    Article  Google Scholar 

  • Howland J, Landva AO (1992) Stability analysis of a municipal solid waste landfill. Stability and Performance of Slope and Embankments-II ASCE Geotechnical Special Publication No. 31, pp 1216–1231

  • Huang Y, Zhu C (2014) Simulation of flow slides in municipal solid waste dumps using a modified MPS method. Nat Hazards 74:491–508

    Article  Google Scholar 

  • Huang Y, Dai ZL, Zhang WJ et al (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag Res 31(3):256–264

    Article  Google Scholar 

  • Jafari NH, Stark TD, Merry S (2013) The July 10 2000 Payatas landfill slope failure. Int Geoeng Case Hist 2(3):208–228

    Google Scholar 

  • Jahanfar MA (2014) Landfill slope stability risk assessment. Dissertation, University of Guelph

  • Kavazanjian E (2001) Mechanical properties of municipal solid waste. In: Proceedings sardinia 2001, 8th international waste management and landfill symposium. Sard 3:415–424

    Google Scholar 

  • Kavazanjian E, Matasovic N, Bonaparte R et al (1995) Evaluation of MSW properties for seismic analysis. In: Geoenvironment 2000, Geotechnical Special Publication, ASCE, No. 46, vol 2, pp 1126–1141

  • Kjeldsen P, Fischer EV (1995) Landfill gas migration–field investigations at skellingsted landfill, Denmark. Waste Manag Res 13(5):467–484

    Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP et al (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    Article  Google Scholar 

  • Kocasoy G, Curi K (1995) The Ümraniye-Hekimbaşi open dump accident. Waste Manag Res 13(4):305–314

    Google Scholar 

  • Koelsch F, Fricke K, Mahler C et al (2005) Stability of landfills-the Bandung dumpsite disaster. In: 10th International waste management and landfill symposium, Sardinia

  • Koerner RM, Soong TY (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18(5):293–309

    Article  Google Scholar 

  • Kong XJ, Deng XJ (2008) Shaking table test on the mechanism of seismically induced deformation of municipal waste landfills. China Civ Eng J 41(5):65–74 (in Chinese)

    Google Scholar 

  • Krinitzsky EL, Hynes ME, Franklin AG (1997) Earthquake safety evaluation of sanitary landfills. Eng Geol 46(2):143–156

    Article  Google Scholar 

  • Li P, Li YP, Huang GH et al (2015) Modeling for waste management associated with environmental-impact abatement under uncertainty. Environ Sci Pollut Res 22(7):5003–5019

    Article  Google Scholar 

  • Lu W, Fu Z, Zhao Y (2016) Combined reticular blind drainage and vertical hierarchical drainage system for landfills located in areas with high rainfall and high groundwater level. Front Environ Sci Eng 10(1):174–181

    Article  Google Scholar 

  • Machado SL, Carvalho MF, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron Eng 128(11):940–951

    Article  Google Scholar 

  • Matasovic N, Kavazanjian E, Augello AJ et al. (1995) Solid waste landfill damage caused by 17 January 1994 Northridge earthquake. In: Woods MC, Seiple RW (eds) The Northridge California earthquake of 17 January 1994: California Department of Conservation, Division of Mines and Geology Special Publication 116, pp 221–229

  • Merry S, Kavazanjian E, Fritz WU (2005) Reconnaissance of the July 10, 2000, Payatas landfill failure. J Perform Constr Facil 19(2):100–107

    Article  Google Scholar 

  • Ministry of Housing and Urban-Rural Development (2012) Technical code for geotechnical engineering of municipal solid waste sanitary landfill, CJJ176-2012. China Archit and Build Press, Beijing (in Chinese)

    Google Scholar 

  • Mitchell JK, Seed RB, Seed HB (1990) Kettleman Hills waste landfill slope failure I: Liner-system properties. J Geotech Eng 116(4):647–668

    Article  Google Scholar 

  • Nastev M, Therrien R, Lefebvre R et al (2001) Gas production and migration in landfills and geological materials. J Contam Hydrol 52(1–4):187–211

    Article  Google Scholar 

  • Oweis IS, Smith DA, Ellwood RB et al (1990) Hydraulic characteristics of municipal refuse. J Geotech Eng 116(4):539–553

    Article  Google Scholar 

  • Qian XD, Guo ZP (1998) Engineering properties of municipal solid waste. Chin J Geotech Eng 20(5):1–6 (in Chinese)

    Google Scholar 

  • Qian XD, Koerner RM (2009) Stability analysis when using an engineered berm to increase landfill space. J Geotech Geoenviron Eng 135(8):1082–1091

    Article  Google Scholar 

  • Qian XD, Koerner RM, Gray DH (2003) Translational failure analysis of landfills. J Geotech Geoenviron Eng 129(6):506–519

    Article  Google Scholar 

  • Qiu ZH, Chen YM, Wang XG (2010) High-speed and long range flow analysis model of waste body after sanitary Msw landfills slope unstability. In: Advances in environmental geotechnics, September 8–10, 2009, Hangzhou. pp 426–429

  • Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14(4):337–346

    Article  Google Scholar 

  • Rowe RK (1999) Solid waste disposal facilities for urban environments. Proc XI Pan Am Conf Soil Mech Geotech Eng, Foz do Iguassu 4:89–111

    Google Scholar 

  • Rowe RK (2012) Third Indian Geotechnical Society: Ferroco Terzaghi oration design and construction of barrier systems to minimize environmental impacts due to municipal solid waste leachate and gas. Indian Geotech J 42:223–256

    Google Scholar 

  • Rowe RK, Quigley RM, Brachman RWI et al (2004) Barrier systems for waste disposal facilities. Taylor & Francis Books Ltd (E & FN Spon), London

  • Sánchez-Jiménez N, Gismera MJ, Sevilla MT et al (2012) Clayey materials as geologic barrier in urban landfills: Comprehensive study of the interaction of selected quarry materials with heavy metals. Appl Clay Sci 56:23–29

    Article  Google Scholar 

  • Savoikar P, Choudhury D (2010) Effect of cohesion and fill amplification on seismic stability of MSW landfills using limit equilibrium method. Waste Manag Res 28(12):1096–1113

    Article  Google Scholar 

  • Savoikar P, Choudhury D (2012) Translational seismic failure analysis of MSW landfills using pseudo-dynamic approach. Int J Geomech 12(2):136–146

    Article  Google Scholar 

  • Seed RB, Mitchell JK, Seed HB (1990) Kettleman hills waste landfill slope failure II: stability analyses. J Geotech Eng 116(4):669–690

    Article  Google Scholar 

  • Shi JY, Qian XD, Zhu YB (2010) Shearing behavior of landfill composite liner by simple shear test. Rock Soil Mech 31(4):1112–1117 (in Chinese)

    Google Scholar 

  • Stark TD, Eid HT, Evans WD et al (2000) Municipal solid waste slope failure. II. stability analyses. J Geotech Geoenviron Eng 126(5):408–419

    Article  Google Scholar 

  • Stark TD, Arellano WD, Hillman RP et al (2005) Effect of toe excavation on a deep bedrock landslide. J Perform Constr Facil 19(3):244–255

    Article  Google Scholar 

  • Stark TD, Huvaj-Sarihan N, Li GC (2009) Shear strength of municipal solid waste for stability analyses. Environ Geol 57(8):1911–1923

    Article  Google Scholar 

  • Sun GZ (1993) On the theory of structure-controlled rock mass. J Eng Geol 1(1):14–18 (in Chinese)

    Google Scholar 

  • Sun GZ, Sun Y (2004) Principles on geological engineering. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Wang GX, Xu JL, Liu GD (2004) Landslidology and Technique of Landslide Control, pp. 98-106, China Railway Publishing House. Beijing (in Chinese)

  • Yesilnacar MI, Cetin H (2008) An environmental geomorphologic approach to site selection for hazardous wastes. Environ Geol 55(8):1659–1671

    Article  Google Scholar 

  • Yu L, Batlle F (2011) A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill. Waste Manag 31(12):2484–2496

    Article  Google Scholar 

  • Zekkos D, Kavazanjian E, Bray JD et al (2010) Physical characterization of municipal solid waste for geotechnical purposes. J Geotech Geoenviron Eng 136:1231–1241

    Article  Google Scholar 

  • Zhan LT, Luo XY, Guan RQ et al (2013) Failure mechanism of sludge pit and downstream waste slope of a MSW landfill. Chin J Geotech Eng 35(7):1189–1196 (in Chinese)

    Google Scholar 

  • Zhang BY, Jie YX (2006) Strength and deformation characteristics of municipal solid wastes. Eng Mech 22(S2):14–22 (in Chinese)

    Google Scholar 

  • Zhang ZY, Wu SM, Chen YM (2000) Experimental research on the parameter of life rubbish in city. Chin J Geotech Eng 22(1):35–39 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Program 973) through Grant No. 2012CB719803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Fan, G. Engineering geological analysis of municipal solid waste landfill stability. Nat Hazards 84, 93–107 (2016). https://doi.org/10.1007/s11069-016-2408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2408-8

Keywords

Navigation