Skip to main content
Log in

Dynamic characterisation and seismic assessment of medieval masonry towers

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The paper investigates the dynamic characterisation, the numerical model tuning and the seismic risk assessment of two monumental masonry towers located in Italy: the Capua Cathedral bell tower and the Aversa Cathedral bell tower. Full-scale ambient vibration tests under environmental loads are performed. The modal identification is carried out using techniques of modal extraction in the frequency domain. The refined 3D finite element model (FEM) is calibrated using the in situ investigation survey. The FEM tuning is carried out by varying the mechanical parameters and accounting for the restraint offered by the neighbouring buildings and the role of soil–structure interaction. The assessment of the seismic performance of the bell towers is carried out through a nonlinear static procedure based on the multi-modal pushover analysis and the capacity spectrum method. Through the discussion of the case studies, the paper shows that the modal identification is a reliable technique that can be used in situ for assessing the dynamic behaviour of monumental buildings. By utilising the tuned FEM of the towers, the theoretical fundamental frequencies are determined, which coincide with the previously determined experimental frequencies. The results from seismic performance assessment through a pushover analysis confirm that the masonry towers in this study are particularly vulnerable to strong damage even when subjected to seismic events of moderate intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(credits: Ugo Persice Pisanti)

Fig. 2
Fig. 3

(credits: Agostino De Maio)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a :

Parameter of the yield Drucker–Prager surface (–)

d :

Soil depth (mm)

E :

Young’s modulus (MPa)

E f :

Young’s modulus of foundation (MPa)

E b :

Young’s modulus of superstructure masonry (MPa)

E s :

Secant Young’s modulus (MPa)

E t :

Tangent Young’s modulus (MPa)

f :

Frequency (Hz)

f c :

Compressive strength (MPa)

f t :

Tensile strength (MPa)

f AVT :

Natural frequencies from ambient vibration test (Hz)

f FEM :

Natural frequencies from finite element model (Hz)

F AVT,i :

ith modal force vectors from ambient vibration test (–)

F FEM,i :

ith modal force vectors from finite element model (–)

F o :

Amplification factor (–)

h :

Bell tower height (m)

K :

Parameter of the yield Drucker–Prager surface

k n :

Normal stiffness (MPa)

k v :

Vertical stiffness (MPa)

m :

Mass (kg)

M :

Mass matrix (kg)

N :

Number of the experimental mode shapes (–)

PGA:

Peak ground acceleration (g)

PGALS :

Reference peak ground acceleration for the life safe limit state (g)

PSD:

Power spectral density (g2/Hz)

P VR :

Probability of exceedance (–)

S a :

Spectral acceleration (m/s2)

S d :

Spectral displacement (cm)

t :

Soil layer thickness (m)

T R :

Return period (years)

V :

Base shear (MN)

W :

Weight (kN)

α i :

ith modal mass ratio (–)

α LS :

Safety index at life safe limit state (–)

Γ i :

ith modal participation factor (–)

δ :

Lateral displacement (m)

δ top :

Roof lateral displacement (m)

δ y :

Displacement in y-direction (m)

ε t :

Tensile strain (‰)

η i :

Error (–)

η :

Weighted arithmetic mean error (–)

μ :

Mass density (kg/m3)

ν :

Poisson’s ratio (–)

Φ i :

ith mode shape (–)

References

  • Abruzzese D, Ferraioli M, Miccoli L, Vari A (2008) Seismic improvement of masonry towers. In: Proceedings of 8th international seminar on structural masonry. Istanbul, pp 395–403

  • Abruzzese D, Miccoli L, Vari A, Ferraioli M, Mandara A, Froncillo S (2009) Dynamic investigations on medieval masonry towers: seismic resistance and strengthening techniques. In: Proceedings of the international conference on protection of historical buildings. Rome, pp 1207–1213

  • Abruzzese D, Miccoli L, Vari A, Ferraioli M, Mandara A, Froncillo S (2009) Dynamic investigations on medieval masonry towers: vibration measurement and structural identification. In: Proceedings of the international conference on protection of historical buildings. Rome, 807–813

  • Abruzzese D, Miccoli L, Yuan JL (2009c) Mechanical behavior of leaning masonry Huzhu Pagoda. J Cult Herit 10:480–486

    Article  Google Scholar 

  • ASCE (2007) Seismic rehabilitation of existing buildings. Standard ASCE/SEI 41-06. American Society of Civil Engineers, Reston

  • ASTM C1196-91 (1991) Standard test method for in situ compressive stress within solid unit masonry—Estimated using flat jack measurements

  • ATC (1996) Seismic evaluation and retrofit of concrete buildings. Report ATC-40. Applied Technology Council, Redwood City

  • Bayraktar A, Türker T, Sevım B, Altunisik AC, Yildirim F (2009) Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test. J Nondestruct Eval 28:37–47

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1993) Engineering applications of correlation and spectral analysis. Wiley Interscience, New York

    Google Scholar 

  • Bennati S, Nardini L, Salvatore W (2005) Dynamic behavior of a medieval masonry bell tower. Part II: measurement and modelling of the tower motion. J Struct Eng Asce 131:1656–1664

    Article  Google Scholar 

  • Bernardeschi K, Padovani C, Pasquinelli G (2004) Numerical modelling of the structural behaviour of Buti’s bell tower. J Cult Herit 5:371–378

    Article  Google Scholar 

  • Betti M, Galano L (2012) Seismic analysis of historic masonry buildings: the Vicarious Palace in Pescia (Italy). Buildings 2:63–82

    Article  Google Scholar 

  • Betti M, Vignoli A (2011) Numerical assessment of the static and seismic behaviour of the Basilica of Santa Maria all’Impruneta (Italy). Constr Build Mater 25:4308–4324

    Article  Google Scholar 

  • Brincker R, Zhang LM, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18th international modal analysis conference (IMAC), San Antonio

  • Cakir F, Uckan E, Shen J, Seker S, Akbas B (2016) Seismic performance evaluation of slender masonry towers: a case study. Struct Des Tall Spec 25:193–212

    Article  Google Scholar 

  • Calderini C, Lagomarsino S (2006) A micromechanical inelastic model for historical masonry. J Earthq Eng 10:453–479

    Google Scholar 

  • Carpinteri A, Invernizzi S, Lacidogna G (2005) In situ damage assessment and nonlinear modelling of a historical masonry tower. Eng Struct 27:387–395

    Article  Google Scholar 

  • Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41:3625–3641

    Article  Google Scholar 

  • Casolo S, Milani G, Uva G, Alessandri C (2013) Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Eng Struct 49:465–490

    Article  Google Scholar 

  • Cerioni R, Brighenti R, Donida G (1995) Use of incompatible displacement modes in a finite element model to analyze the dynamic behavior of unreinforced masonry panels. Comput Struct 57:47–57

    Article  Google Scholar 

  • Chopra AK, Goel RK (2004) A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan building. Earthq Eng Struct D 33:903–927

    Article  Google Scholar 

  • Cressie N (2015) Statistics for spatial data. Wiley, Hoboken

    Google Scholar 

  • D’Ambrisi A, Mariani V, Mezzi M (2012) Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests. Eng Struct 36:210–219

    Article  Google Scholar 

  • De Sortis A, Antonacci E, Vestroni F (2005) Dynamic identification of a masonry building using forced vibration tests. Eng Struct 27:155–165

    Article  Google Scholar 

  • Eurocode, CEN (2004) 8: Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings (EN 1998-1: 2004). European Committee for Normalization, Brussels

  • Fajfar P (1999) Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct D 28:979–993

    Article  Google Scholar 

  • Fajfar P, Kilar V, Marusic D, Perus I, Magliulo G (2005) The extension of the N2 method to asymmetric buildings. In: Proceedings of the 4th European workshop on the seismic behaviour of irregular and complex structures (No. 41)

  • FEMA (2005) Improvement of nonlinear static seismic analysis procedures. Report FEMA 440. Federal Emergency Management Agency, Redwood City

  • Ferraioli M (2015) Case study of seismic performance assessment of irregular RC buildings: hospital structure of Avezzano (L’Aquila, Italy). Earthq Eng Eng Vib 14:141–156

    Article  Google Scholar 

  • Ferraioli M, Abruzzese D, Miccoli L, Vari A, Di Lauro G (2010) Structural identification from environmental vibration testing of an asymmetric-plan hospital building in Italy. In: COST ACTION C26: Urban habitat constructions under catastrophic events—Proceedings of the final conference, pp 981–986

  • Ferraioli M, Lavino A, Mandara A (2014a) Behaviour factor of code-designed steel moment-resisting frames. Int J Steel Struct 14(2):243–254

    Article  Google Scholar 

  • Ferraioli M, Avossa AM, Lavino A, Mandara A (2014b) Accuracy of advanced methods for nonlinear static analysis of steel moment-resisting frames. Open Constr Build Technol J 8:310–323

    Google Scholar 

  • Ferraioli M, Avossa AM, Mandara A (2014c) Assessment of progressive collapse capacity of earthquake-resistant steel moment frames using pushdown analysis. Open Constr Build Technol J 8:324–336

    Google Scholar 

  • Foraboschi P, Vanin A (2013) Non-linear static analysis of masonry buildings based on a strut-and-tie modeling. Soil Dyn Earthq Eng 55:44–58

    Article  Google Scholar 

  • Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I and II. Earthq Eng Struct D 26:441–462

    Article  Google Scholar 

  • Gentile C, Saisi A, Cabboi A (2015) Structural identification of a masonry tower based on operational modal analysis. Int J Archit Herit 9:98–110

    Article  Google Scholar 

  • Ivorra S, Pallarés FJ (2006) Dynamic investigation on a masonry bell tower. Eng Struct 28:660–667

    Article  Google Scholar 

  • Júlio E, Rebelo C, Costa D (2008) Structural assessment of the tower of the University of Coimbra by modal identification. Eng Struct 30:3468–3477

    Article  Google Scholar 

  • Kilar V, Fajfar P (2001) On the applicability of pushover analysis to the seismic performance evaluation of asymmetric buildings. Eur Earthq Eng 15:20–31

    Google Scholar 

  • Lagomarsino S, Cattari S (2015) PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull Earthq Eng 13:13–47

    Article  Google Scholar 

  • Lemos JV (2007) Discrete element modelling of masonry structures. Int J Archit Herit 1:190–213

    Article  Google Scholar 

  • Lofti HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng Asce 120:63–81

    Article  Google Scholar 

  • Lourenço PB (2002) Computations of historical masonry constructions. Prog Struct Eng 4(3):301–319

    Article  Google Scholar 

  • Lourenço PB, Roque J (2006) Simplified indexes for the seismic vulnerability of ancient masonry buildings. Constr Build Mater 20:200–208

    Article  Google Scholar 

  • Lourenço PB, Rots J (1997) A multi-surface interface model for the analysis of masonry structures. J Eng Mech Asce 123:660–668

    Article  Google Scholar 

  • Lourenço PB, Rots J, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng Asce 124:642–652

    Article  Google Scholar 

  • Lourenço PB, Krakowiak KJ, Fernandes FM, Ramos LF (2007) Failure analysis of Monastery of Jerónimos, Lisbon: how to learn from sophisticated numerical models. Eng Fail Anal 14:280–300

    Article  Google Scholar 

  • Luciano R, Sacco E (1998) A damage model for masonry structures. Eur J Mech A Solid 17:285–303

    Article  Google Scholar 

  • LUSAS Finite element system (2012) Lusas theory manual, FEA Ltd

  • Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Method Appl Mech 205:189–203

    Article  Google Scholar 

  • Milani G, Russo S, Pizzolato M, Tralli A (2012) Seismic behavior of the San Pietro di Coppito church bell tower in L’Aquila, Italy. TOCIEJ 6:131–147

    Article  Google Scholar 

  • National Instruments (2003) LabView measurements manual. National Instruments, Austin

  • NTC (2008) Norme Tecniche per le Costruzioni. DM del 14 gennaio 2008. Gazzetta Ufficiale 29—Istruzioni per l’applicazione delle « Nuove norme tecniche per le costruzioni » . Circolare del 2 febbraio 2009. Gazzetta Ufficiale 47. Ministero per le Infrastrutture e Trasporti (Italian Building Code. Ministerial decree of Jan 14th, 2008. Official gazette 29—Guidelines for the application of the new Building Code. Document of Feb 2nd, 2009. Official gazette 47. Ministry of Infrastructure and Transport) Rome

  • Orduña A, Lourenço PB (2005a) Three-dimensional limit analysis of rigid blocks assemblages. Part I: torsion failure on frictional interfaces and limit analysis formulation. Int J Solids Struct 42:5140–5160

    Article  Google Scholar 

  • Orduña A, Lourenço PB (2005b) Three-dimensional limit analysis of rigid blocks assemblages. Part II: load-path following solution procedure and validation. Int J Solids Struct 42:5161–5180

    Article  Google Scholar 

  • Osmancikli G, Uçak S, Turan FN, Türker T, Bayraktar A (2012) Investigation of restoration effects on the dynamic characteristics of the Hagia Sophia bell-tower by ambient vibration test. Constr Build Mater 29:564–572

    Article  Google Scholar 

  • PCM (2011) Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al DM 14 gennaio 2008. Presidenza del Consiglio dei Ministri (Assessment and reduction of seismic risk of cultural heritage in relation to the Building Code included in the Ministerial decree of January 14th, 2008. Presidency of the Council of Ministers) Rome

  • Peeters B (2000) System identification and damage detection in civil engineering. Ph.D. dissertation, Katholieke Universiteit Leuven

  • Peña F, Lourenço PB, Mendes N, Oliveira DV (2010) Numerical models for the seismic assessment of an old masonry tower. Eng Struct 32:1466–1478

    Article  Google Scholar 

  • Preciado A (2015) Seismic vulnerability and failure modes simulation of ancient masonry towers by validated virtual finite element models. Eng Fail Anal 57:72–87

    Article  Google Scholar 

  • Ramos LF, Marques L, Lourenco PB, De Roeck G, Campos-Costa A, Roque J (2010) Monitoring historical masonry structures with operational modal analysis: two case studies. Mech Syst Signal Process 24:1291–1305

    Article  Google Scholar 

  • Roca P, Cervera M, Gariup G (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17(3):299–325

    Article  Google Scholar 

  • Russo G, Bergamo O, Damiani L, Lugato D (2010) Experimental analysis of the “Saint Andrea” masonry bell tower in Venice. A new method for the determination of “tower global Young’s modulus E”. Eng Struct 32:353–360

    Article  Google Scholar 

  • SBAAAS CE-BN (2008) Soprintendenza per i Beni Ambientali, Architettonici, Artistici e Storici delle Provincie di Caserta e Benevento, Progetto Interventi Sperimentali Strutture snelle ad elevato rischio. Campanile della Cattedrale di S. Paolo (Office for environmental, architectural, artistic and historical heritage protection office of Caserta and Benevento areas. Project for interventions on tall structures with high risk. Saint Paul Cathedral bell tower). Il Cenacolo s.r.l. Centro Studi e Ricerche, Laboratorio Analisi

  • Schlegel R (2004) Numerische Berechnung von Mauerwerkstrukturen in homogenen und diskreten Modellierungsstrategien (Numerical simulations of masonry structures by homogenized and discrete modeling strategies). Ph.D. dissertation, University of Weimar

  • Tomaszewska A, Szymczak C (2012) Identification of the Vistula Mounting tower model using measured modal data. Eng Struct 42:342–348

    Article  Google Scholar 

  • Van Overschee P, De Moor BL (2012) Subspace identification for linear systems: theory—implementation—applications. Springer, New York

    Google Scholar 

  • Zucchini A, Lourenço PB (2007) Mechanics of masonry in compression: results from a homogenisation approach. Comput Struct 85:193–204

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Mr. Salvatore Froncillo, Mr. Luigi Aruta and Mr. Alessandro Vari for their important support in the on-site measurements carried out on both towers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mandara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraioli, M., Miccoli, L., Abruzzese, D. et al. Dynamic characterisation and seismic assessment of medieval masonry towers. Nat Hazards 86 (Suppl 2), 489–515 (2017). https://doi.org/10.1007/s11069-016-2519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2519-2

Keywords

Navigation