Skip to main content

Advertisement

Log in

A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges

  • Review Article
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

It has been 15 years since the catastrophic 2005 Kashmir Mw 7.6 earthquake induced thousands of landslides in northern Pakistan and Kashmir. There have been many studies on various aspects of the landslides triggered by the earthquake, such as the mechanisms of individual large landslides, regional seismic landslide inventory mapping, spatial distribution pattern, susceptibility and hazard assessment, and landslide evolution, which provide beneficial scientific results. However, there is currently no summary and generalization of these studies for ready use of the researchers to fully understand the information of the landslide caused by the earthquake. This study comprehensively reviews and summarizes the important results obtained from published data on the landslides. The seismogenic and regional active faults, fragile lithological condition, heavy rainfall, anthropogenic activities, and steep terrain were considered as main controlling factors for the landslide occurrence. Studies on landslide evolution reveal that vegetation on most of the landslides was partially recovered after the earthquake, while slope failures along roads and drainages increased. In the affected area, landslides are still a great threat to communication networks and communities. Despite many past studies, there is still a need or in-depth research using more precise methods to understand the mechanism, hazard, and risk assessment, numerical simulation, landslide risk management and mitigation, and continuous or temporal monitoring of landslides in the affected area. Combined with high-quality data on landslides triggered by other earthquake events in recent years, the study points out the prospects of Kashmir earthquake-induced landslides and summarizes the future challenges of earthquake-triggered landslides research, including accuracy of inventories, the precision of landslide, susceptibility methods, prevention and control of landslide, and landslide hazards and risk assessment. This review can provide a reasonable scientific research and disaster prevention and mitigation strategy and scheme for landslides triggered by a large earthquake in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(adopted from Saba et al. 2010)

Fig. 7

(adopted from Yunus et al. 2020)

Similar content being viewed by others

References

  • Ahmed, S., 2014. Investigation of landslide along the Neelum Valley road. Unpublished BS Thesis, Institute of Geology, University of AJK, Muzaffarabad

  • Ambraseys N, Jackson D (2003) A note on early earthquakes in northern India and southern Tibet. Curr Sci India 84(4):570–582

    Google Scholar 

  • Angster S, Fielding EJ, Wesnousky S, Pierce I, Chamlagain D, Gautam D, Upreti BN, Kumahara Y, Nakata T (2015) Field reconnaissance after the 25 April 2015 M 7.8 Gorkha earthquake. Seismol Res Lett 86(6):1506–1513

    Article  Google Scholar 

  • Armbruster J, Seeber L, Jacob KH (1978) The Northwestern termination of the Himalayan Mountain Front Active tectonics from micro earthquakes. J Geophy Res. 83(l) 269–282

  • Azarafza M, Ghazifard A, Akgün H, Asghari-Kaljahi E (2018) Landslide susceptibility assessment of South Pars Special Zone, southwest Iran. Environ Earth Sci 77(24):1–29

    Article  Google Scholar 

  • Baig MS, Lawrence RD (1987) Precambrian to Early Paleozoic orogenesis in the Himalayas. Kashmir J Geol 5:1–22

    Google Scholar 

  • Baig MS (2006) Active Faulting and Earthquake Deformation in Hazara-Kashmir Syntaxis, Azad Kashmir, Northwest Himalaya, Pakistan. In: Kausar AB, Karim T, Khna T et al (eds) Extended Abstracts, International Conference on 8 October 2005 Earthquake in Pakistan: Its Implications and Hazard Mitigation. Geological Survey of Pakistan, Islamabad, pp 27–28

    Google Scholar 

  • Basharat M, Rohn J (2015) Effects of volume on travel distance of mass movements triggered by the 2005 Kashmir earthquake, in the Northeast Himalayas of Pakistan. Nat Hazards 77(1):273–292. https://doi.org/10.1007/s11069015-1590-4

    Article  Google Scholar 

  • Basharat M, Rohn J, Ehret D, Baig M (2012) Lithological and structural control of Hattian Bala rock avalanche triggered by the Kashmir earthquake 2005, sub- Himalayas, northern Pakistan. J Earth Sci 23:213–224

    Article  Google Scholar 

  • Basharat M, Rohn J, Baig MS, Khan MR, Schleier M (2014a) Large scale mass movements triggered by the Kashmir earthquake 2005. Pakistan J Mt Sci 11(1):19–30

    Article  Google Scholar 

  • Basharat M, Rohn J, Baig MS, Khan MR (2014b) Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology 206:203–214. https://doi.org/10.1016/j.geomorph.2013.09.025

    Article  Google Scholar 

  • Basharat M, Shah HR, Hameed N (2016) Landslide susceptibility mapping using GIS and weighted overlay method. A case study from NW Himalayas. Pakistan Arab. J. Geosci. 9(4):292. https://doi.org/10.1007/s125170162308-y

    Article  Google Scholar 

  • Basharat, M., Ali, A., Jadoon, I. A. K., & Rohn, J., 2016a. Using PCA in evaluating event‐controlling attributes of landsliding in the 2005 Kashmir earthquake region, NW Himalayas, Pakistan. Natural Hazards, 81(3), 1999–2017.https://doi.org/https://doi.org/10.1007/s11069‐016‐2172‐9

  • Basharat, M., Sarfrarz, Y., Ahmed, K.S., Ali, M.Z., 2017. A Preliminary investigation of reactivated mass movement near the epicenter of 2005 Kashmir earthquake, Himalayas, Pakistan. Journal of Himalayan Earth Sciences Volume 50, No. 1A, 2017 pp. 57–6

  • Basharat M, Qasim M, Shafique M, Hameed N, Riaz MT, Khan MR (2018) Regolith thickness modeling using a GIS approach for landslide distribution analysis NW Himalayas. J. Mt. Sci. 15(11):2466–2479. https://doi.org/10.1007/s11629-018-4840-6

    Article  Google Scholar 

  • Bendick R, Bilham R, Khan MA, Khan SF (2007) Slip on an active wedge thrust from geodetic observations of the 8 October 2005 Kashmir earthquake. Geology 35:267–270

    Article  Google Scholar 

  • Bilham R, Gaur VK, Molnar P (2001) Himalayan Seismic Hazard. Science 293:1442–1444. https://doi.org/10.1126/science.1062584

    Article  Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5(6):853–862

    Article  Google Scholar 

  • Bulmer M, Farquhar T, Roshan M, Akhtar SS, Wahla SK (2007) Landslide hazards after the 2005 Kashmir earthquake. Eos, Transactions American Geophysical Union 88(5):53–55

    Article  Google Scholar 

  • Calkins JA, Offield TW, Abdullah SKM, Ali ST (1975) Geology of the southern Himalaya in Hazara, Pakistan, and adjacent areas. US Geological Survey 716C. USGS, Washington, DC

  • Chae BG, Park HJ, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21(6):1033–1070

    Article  Google Scholar 

  • Champati Ray PK, Parvaiz I, Jayangondaperumal R, Thakur VC, Dadhwal VK, Bhat FA (2009) Analysis of seismicity-induced landslides due to the 8 October 2005 earthquake in Kashmir Himalaya. Curr Sci 97(12):1742–1751

    Google Scholar 

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238

    Article  Google Scholar 

  • Chini M, Cinti FR, Stramondo S (2011) Co-seismic surface effects from very high resolution panchromatic images: the case of the 2005 Kashmir (Pakistan) earthquake. Nat Hazards Earth Syst 11:931–943

    Article  Google Scholar 

  • Cui P, Zhang J, Yang Z, Chen X, You Y, Li Y (2014) Activity and distribution of geohazards induced by the Lushan earthquake, April 20, 2013. Nat Hazards 73(2):711–726

    Article  Google Scholar 

  • Dadson SJ, Hovius N, Chen H, Dade WB, Lin JC, Hsu ML, Lin CW, Horng MJ, Chen TC, Milliman J, Stark CP (2004) Earthquake triggered increase in sediment delivery from an active mountain belt. Geology 32(733):736. https://doi.org/10.1130/G20639.1.2004

    Article  Google Scholar 

  • Dai F, Lee C, Ngai Y (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Dai F, Xu C, Yao X, Xu L, Tu X, Gong Q (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake. China. Journal of Asian Earth Sciences 40(4):883–895. https://doi.org/10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  • Dang K, Sassa,K, Fukuoka, H., Sakai, N., Sato, Y., Takara, K., Quang, L.H., Loi, D.H., Van Tien, P., Ha, N.D. (2016) Mechanism of two rapid and long-runout landslides in the 16 April 2016 Kumamoto earthquake using a ring-shear apparatus and computer simulation (LS-RAPID). Landslides 13(6):1525–1534

    Article  Google Scholar 

  • Das JD, Saraf AK, Panda S (2007) Satellite data in a rapid analysis of Kashmir earthquake (October 2005) triggered landslide pattern and river water turbidity in and around the epicentral region. Int J Remote Sens 28(8):1835–1842

    Article  Google Scholar 

  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM (2020) Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci 10(7):2466

    Article  Google Scholar 

  • Dunning SA, Mitchella WA, Rossera NJ, Petleya DN (2007) The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Eng Geol 93:130–144

    Article  Google Scholar 

  • Earthquake Reconstruction and Rehabilitation Agency (ERRA) (2007) District Diaster Risk Management Plan. Muzaffarabad, Engineering Cell (TRC) ERRA

    Google Scholar 

  • Eker AM, Dikmen M, Cambazoğlu S, Düzgün ŞH, Akgün H (2014) Evaluation and comparison of landslide susceptibility mapping methods: a case study for the Ulus district, Bartın, northern Turkey. Int J Geogr Inf Sci 29(1):132–158

    Article  Google Scholar 

  • Fan X, Juang CH, Wasowski J, Huang R, Xu Q, Scaringi G, van Westen CJ, Havenith HB (2018) What we have learned from the 2008 Wenchuan Earthquake and its aftermath: a decade of research and challenges. Eng Geol 241:25–32

    Article  Google Scholar 

  • Fan X, Domènech G, Scaringi G, Huang R, Xu Q, Hales TC, Dai L, Yang Q, Francis O (2018) Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan Earthquake revealed by a detailed multi-temporal inventory. Landslides 15(12):2325–2341. https://doi.org/10.1007/s10346-018-1054-5

    Article  Google Scholar 

  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Hovius N, Hales CT, Jibson RW, Allstadt KE, Zhang L, Evans SG, Xu C, Li G, Pei X, Xu Q, Huang R (2019) Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys. https://doi.org/10.1029/2018RG000626

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C et al (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 102:85–98

    Article  Google Scholar 

  • Fujiwara S, Tobita M, Sato HP, Ozawa S, Une H, Koarai M, Nakai H, Fujiwara M, Yarai H, Nishimura T, Hayashi F (2006) Satellite data gives snapshot of the 2005 Pakistan earthquake. Eos. Trans Am Geophys Union 87:73–77

    Article  Google Scholar 

  • Glade, T., Anderson, M., Crozier, M., 2005. Landslide Hazard and Risk. Wiley, berlin

  • Gorum T, van Westen CJ, Korup O, van der Meijde M, Fan X, van der Meer FD (2013) Complex rupture mechanism and topography control symmetry of mass wasting pattern, 2010 Haiti earthquake. Geomorphology 184:127–138. https://doi.org/10.1016/j.geomorph.2012.11.027

    Article  Google Scholar 

  • Gorum T, Korup O, van Westen CJ, van der Meijde M, Xu C, van der Meer FD (2014) Why so few? Landslides triggered by the 2002 Denali earthquake, Alaska. Quatern Sci Rev 95:80–94. https://doi.org/10.1016/j.quascirev.2014.04.032

    Article  Google Scholar 

  • Greco, A., 1989. “Tectonic and metamorphism of the western Himalayan Syntaxis area (Azad Kashmir NE Pakistan).” Ph.D. dissertation, Geological Institute of the Swiss Federal Institute of Technology and Univ. of Zurich.

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Harp EL, Jibson RW (1985) Inventory of landslides triggered by the 1994 Northridge. U.S. Geological Survey Open-File Report Rep, California earthquake, pp 95–213

    Google Scholar 

  • Harp, E.L., Keefer, D.K., 1990. Landslides triggered by the earthquake. In: Rymer, M.J., Ellsworth, W.L. (Eds.), The Coalinga, California, Earthquake of May 2, 1983. U.S. Geological Survey Professional Paper, 1487. pp. 335–347.

  • Harp, E.L., Wilson, R.C., Wieczorek, G.F., 1981. Landslides from the February 4, 1976, Guatemala earthquake. U.S. Geological Survey Professional Paper 1204-A, Washington, No. 551.3 HAR

  • Harp EL, Keefer DK, Sato HP, Yagi H (2011) Landslide inventories: the essential part of seismic landslide hazard analyses. Eng Geol 122:9–21

    Article  Google Scholar 

  • Harp, E.L.,. Jibson, R.W., Schmitt, R..G., 2016. Map of landslides triggered by the January 12, 2010, Haiti earthquake: U.S. Geological Survey Scientific Investigations Map 3353, 15 p., 1 sheet, scale 1:150,000. https://pubs.er.usgs.gov/publication/sim3353, edited, doi:https://doi.org/10.3133/sim3353

  • Havenith HB, Strom A, Jongmans D, Abdrakhmatov K, Delvaux D, Trefois P (2003) Seismic triggering of landslides, Part A: field evidence from the Northern Tien Shan. Nat Hazards Earth Syst Sci 3(1–2):135–149

    Article  Google Scholar 

  • Hovius N, Meunier P, Ching-weei L (2011) Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet Sc Lett 304:347355. https://doi.org/10.1016/j.epsl.2011.02.005

    Article  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529

    Article  Google Scholar 

  • Huang R, Pei X, Fan X, Zhang W, Li S, Li B (2012) The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008. China Landslides 9(1):131–142

    Article  Google Scholar 

  • Hussain A, Mughal N, Haq I, Latif A (2004) Geological Map of the Gari Habib Ullah Area, District Mansehra and Parts of Muzaffarabad District, AJK. Geological Map Series, Geological Survey of Pakistan, Islamabad-Pakistan

    Google Scholar 

  • Jadoon IAK, Hinderer M, Kausar AB, Qureshi AA, Baig MS, Basharat M, Frisch W (2015) Structural interpretation and geohazard assessment of a locking line 2005 Kashmir Earthquake. Western Himalayas Environ Earth Sci 73(11):7587–7602. https://doi.org/10.1007/s12665-014-3929-7

    Article  Google Scholar 

  • Jan MQ, MonaLisa K, M.A., (2008) Post-October 8, 2005, Muzaffarabad earthquake scenario. Journal of Himalayan Earth Sciences 40:1–6

    Google Scholar 

  • Jouanne F, Awan A, Madji A, Pêcher A, Latif M, Kausar A, Mugnier JL, Khan I, Khan NA (2011) Postseismic deformation in Pakistan after the 8 October 2005 earthquake: evidence of after slip along a flat north of the Balakot Bagh thrust. J Geophys Res Solid Earth 116:B07401. https://doi.org/10.1029/2010JB007903

    Article  Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642

    Article  Google Scholar 

  • Kamp U, Owen L, Growley B, Khattak G (2010) Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: an assessment of the reliability of susceptibility zoning maps. Nat Hazards 54:125

    Article  Google Scholar 

  • Kaneda H, Nakata T, Tsutsumi H, Kondo H, Sugito N, Awata Y, Akhtar SS, Majid A, Khattak W, Awan AA, Yeats RS, Hussain A, Ashraf M, Wesnousky SG, Kausar AB (2008) Surface rupture of the 2005 Kashmir, Pakistan earthquake and its active tectonic implications. Bull Seismol Soci Am 98(2):521–557. https://doi.org/10.1785/0120070073

    Article  Google Scholar 

  • Kargel JS, Leonard GJ, Shugar DH, Haritashya UK, Bevington A, Fielding EJ, Fujita K, Geertsema M, Miles ES, Steiner J, Anderson E, Bajracharya S, Bawden GW, Breashears DF, Byers A, Collins B, Dhital MR, Donnellan A, Evans TL, Geai ML, Glasscoe MT, Green D, Gurung DR, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel WW, Jiang L, Jibson R, Kääb A, Khanal NR, Kirschbaum D, Kraaijenbrink PDA, Lamsal D, Liu S, Lv M, McKinney D, Nahirnick NK, Nan Z, Ojha S, Olsenholler J, Painter TH, Pleasants M, Pratima KC, Qi Y, Raup BH, Regmi D, Rounce DR, Sakai A, Shangguan D, Shea JM, Shrestha AB, Shukla A, Stumm D, van der Kooij M, Voss K, Wang X, Weihs B, Wolfe D, Wu L, Yao X, Yoder MR, Young N (2016) Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351(6269):8353

    Article  Google Scholar 

  • Kazmi AH, Jan QM (eds) (1997) Geology and tectonics of Pakistan. Graphic Publisher, Karachi, Pakistan, p 554

    Google Scholar 

  • Kazmi AH, Jan MQ (1997) Geology and Tectonics of Pakistan. Graphic Publishers, Karachi, p 554p

    Google Scholar 

  • Keefer DK (1984) Landslides Caused by Earthquakes. Geol Soc Am Bull 95(4):406–421

    Article  Google Scholar 

  • Keefer DK (2002) Investigating landslides caused by earthquakes. A historic review Surv Geophys 23:473–510

    Article  Google Scholar 

  • Khan, A., 2017. Characteristics and failure mechanism of Dana-Sohater landslide, District Muzaffarabad. Unpublished MS Thesis, Institute of Geology, University of AJK, Muzaffarabad

  • Khan SF, Kamp U, Owen LA (2013) Documenting five years of landsliding after the 2005 Kashmir earthquake, using repeat photography. Geomorphology 197:45–55

    Article  Google Scholar 

  • Khattak GA, Owen LA, Kamp U, Harp EL (2010) Evolution of earthquake triggered landslides in the Kashmir Himalaya, northern Pakistan. Geomorphology 115:102–108

    Article  Google Scholar 

  • Kiyota T, Sattar A, Konagai K, Kazmi ZA, Okuno D, Ikeda T (2011) Breaching failure of a huge landslide dam formed by the 2005 Kashmir earthquake. Soils Found 51:1179–1190

    Article  Google Scholar 

  • Konagai K, Sattar A (2012) Partial breaching of Hattian Bala Landslide Dam formed in the 8th October 2005 Kashmir Earthquake, Pakistan. Landslides 9:1–11

    Article  Google Scholar 

  • Lee ST, Yu TT, Peng WF, Wang CL (2010) Incorporating the effects of topographic amplification in the analysis of earthquake induced landslide hazards using logistic regression. Nat Hazards Earth Syst 10(2475):2488

    Google Scholar 

  • Li ZB, Liu TS, Yang J (2013) Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismictomography and aftershock relocation. Geophys J Int 95:2016–2022

  • Li G, West AJ, Densmore AL, Jin Z, Parker RN, Hilton RG (2014) Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance, geochemistry. Geophysics Geosystems 15(4):833–844. https://doi.org/10.1002/2013GC005067

    Article  Google Scholar 

  • Liao, H.W., Lee, C.T., 2000. Landslides triggered by the Chi-Chi earthquake. Paper presented at Proceedings of the 21st Asian conference on remote sensing

  • Lin CW, Shieh CL, Yuan BD, Shieh YC, Liu SH, Lee SY (2004) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows Example from the Chenyulan River watershed, Nantou. Taiwan Eng Geol 71(1–2):49–61. https://doi.org/10.1016/S0013-7952(03)00125-X

    Article  Google Scholar 

  • Lodhi MA (2011) Earthquake-induced landslide mapping in the western Himalayas using medium resolution ASTER imagery. Int J Remote Sens 32(19):5331–5346

    Article  Google Scholar 

  • Ma S, Xu C (2019) Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake. Nat Hazards 96(1):389–412

    Article  Google Scholar 

  • Maes J, Kervyn M, de Hontheim A, Dewitte O, Jacobs L, Mertens K, Poesen J (2017) Landslide risk reduction measures: A review of practices and challenges for the tropics. Prog Phys Geogr 41(2):191–221

    Article  Google Scholar 

  • Mahmood I, Qureshi SN, Tariq S, Atique L, Iqbal MF (2015) Analysis of landslides triggered by October 2005. Kashmir Earthquake, PLoS currents, p 7

    Google Scholar 

  • Mao Z, Liu G, Huang Y, Bao Y (2019) A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation. Eng Geol 260:105226

    Article  Google Scholar 

  • Marc O, Hovius N, Meunier P, Uchida T, Hayashi S (2015) Transient changes of landslide rates after earthquakes. Geology 43:883–886. https://doi.org/10.1130/G36961.1

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Martha TR, Roy P, Mazumdar R, Govindharaj KB, Kumar KV (2017) Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides 14(2):697–704

    Article  Google Scholar 

  • Massey C, Townsend D, Rathje E, Allstadt KE, Lukovic B, Kaneko Y et al (2018) Landslides triggered by the 14 November 2016Mw 7.8 Kaikōura earthquake New Zealand. Bull Seismol Soc Am 108(3B):1630–1648. https://doi.org/10.1785/0120170305

    Article  Google Scholar 

  • McCrink, P.T., 2001. Regional Earthquake-Induced Landslide Mapping Using Newmark Displacement Criteria, Santa Cruz County, California. In: In: Ferriz, H., Anderson (Eds.), Engineering Geology Practice in Northern California 210. Association of Engineering Geologists Special Publication 12, California Geological Survey Bulletin, pp. 77–93

  • Michel J, Dario C, Marc-Henri D, Thierry O, Marina PI, Bejamin R (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 267:105478

    Article  Google Scholar 

  • Micu M (2011, September). Landslide assessment: from field mapping to risk management. A case-study in the Buzău Subcarpathians. In Forum geografic (Vol. 10, No. 2)

  • MonaLisa K, A. A., Jan, M.Q. (2008) The 8 October 2005 Muzaffarabad earthquake: preliminary seismological investigations and probabilistic estimation of peak ground acceleration. Curr Sci 94(9):1158–1166

    Google Scholar 

  • MonaLisa AAK, Jan MQ, Yeats RS, Hussain A, Khan SA (2009) New data on the Indus Kohistan seismic zone and its extension into the Hazara-Kashmir Sytaxis, NW Himalayas of Pakistan. J Seismolog 13:333–361

    Google Scholar 

  • Nakata T Tsutsumi H, Khan SH, Lawrence RD (1991) Vol. 141 of Active faults of Pakistan: Map sheet and inventories. Hiroshima, Japan: Hiroshima Univ

  • Okalp K, Akgün H (2016) National level landslide susceptibility assessment of Turkey utilizing public domain dataset. Environ Earth Sci 75(9):847

    Article  Google Scholar 

  • Owen LA, Kamp U, Khattak GA, Harp EL, Keefer DK, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94:1–9

    Article  Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge. California earthquake Eng Geol 58(3–4):251–270

    Google Scholar 

  • Parker RN, Densmore AL, Rosser NJ, De Michele M, Li Y, Huang RQ, Whadcoat S, Petley DN (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4(7):449–452

    Article  Google Scholar 

  • ParvaizChampatiray IPK, Bhat FA, Dadhwal VK (2011) Earthquake induced landslide dam in the Kashmir Himalayas. Int J Remote Sens 33:655–660

    Google Scholar 

  • Pathier E, Fielding EJ, Wright TJ, Walker R, Parsons BE, Hensley S (2006). Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophys Res Lett, 33(20)

  • Peiris N, Rossetto T, Burton P (2006) EEFIT Mission: October 8, 2005 Kashmir Earthquake. The Institution of Structural Engineers, London, p 31

    Google Scholar 

  • Petley D, Dunning S, Rosser N, Kausar AB (2006) Incipient landslides in the Jhelum Valley, Pakistan following the 8th October 2005 earthquake. In: Marui H (ed) Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Frontiers of Science Series. Universal Academy, Tokyo

    Google Scholar 

  • Poiraud A (2014) Landslide susceptibility–certainty mapping by a multi method approach: a case study in the Tertiary basin of Puy-en-Velay (Massif central, France). Geomorphology 216:208–224

    Article  Google Scholar 

  • Pourghasemi HR, Yansari ZT, Panagos P, Pradhan B (2018) Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab J Geosci 11(9):1–12

    Article  Google Scholar 

  • Ray PKC, Parvaiz I, Jayangondaperumal R, Thakur VC, Dadhwal VK, Bhat FA (2009) Analysis of seismicity-induced landslides due to the 8 October 2005 earthquake in Kashmir Himalaya. Curr Sci 97:1742–1751

  • Reddy CD, Prajapati S (2008) GPS measurements of postseismic deformation due to October 8, 2005 Kashmir earthquake. J Seismolog 13(3):415–420. https://doi.org/10.1007/s10950-008-9111-5

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J (2018) A data-driven approach to landslide-susceptibility mapping in mountainous Terrain: case study from the Northwest Himalayas. Pakistan. Nat Hazards Rev. 19(4):05018007. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000302

    Article  Google Scholar 

  • Riaz S, Wang G, Basharat M, Takra K (2019) Experimental investigation of a catastrophic landslide in northern Pakistan. Landslides 16(10):2017–2032. https://doi.org/10.1007/s10346-019-01216-5

    Article  Google Scholar 

  • Rieux SK, Qureshi RA, Peduzzi P, Jaboyedoff MJ, Breguet A, Dubbois J, Jaubert R, Cheema MA (2007) An interdisciplinary approach to understanding landslides and risk management: A case study from earthquake affected Kashmir. In Mountain Forum, Mountain GIS e-Conference, January 14–25, 2008

  • Roback K, Clark MK, West AJ, Zekkos D, Li G, Gallen SF, Champlain D, Godt JW (2017) Map data of landslides triggered by the 25 April 2015 Mw 78 Gorkha. U.S. Geological Survey data release, Nepal earthquake. https://doi.org/10.5066/F7DZ06F9

    Book  Google Scholar 

  • Saba SB, van der Meijde M, van der Werff H (2010) Spatiotemporal landslide detection for the 2005 Kashmir earthquake region. Geomorphology 124:17–25

    Article  Google Scholar 

  • Sabokbar HF, Roodposhti MS, Tazik E (2014) Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology 226:15–24

    Article  Google Scholar 

  • Sato HP, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 4:113–122

    Article  Google Scholar 

  • Sattar A, Konagai K (2012) Partial breaching of Hattian Bala Landslide Dam formed in the 8th October 2005 Kashmir Earthquake, Pakistan. Landslides 9:1–11

    Article  Google Scholar 

  • Sattar A, Konagai K, Kiyota T, Ikeda T, Johansson J (2011) Measurement of debris mass changes and assessment of the dam break flood potential of earthquake-triggered Hattian landslide dam. Landslides 8:171–182

    Article  Google Scholar 

  • Sayab M, Khan MA (2010) Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake. NW Himalaya Tectonophysics 493:58–73

    Article  Google Scholar 

  • Schneider J (2009) Seismically reactivated Hattian slide in Kashmir, Northern Pakistan. J Seismol 13:387–398

    Article  Google Scholar 

  • Sepulveda SA, Murphy W, Jibson RW, Petley DN (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon. California Eng Geol 80:336–348

    Article  Google Scholar 

  • Shafique, M. (2020). Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake. Geomorphology, 107228

  • Shafique M, van der Meijde M, Kerle N, van der Meer F, Khan MA (2008) Predicting topographic aggravation of seismic ground shaking by applying geospatial tools. J Himalayan Earth Sci 41:33–43

    Google Scholar 

  • Shafique M, van der Meijde M, Kerle N, van der Meer F (2011) Impact of DEM source and resolution on topographic seismic amplification. Int J Appl Earth Obs Geoinf 13(420):427

    Google Scholar 

  • Shafique M, Meijde MVD, Khan MA (2016) A review of the 2005 Kashmir earthquake-induced landslides; from remote sensing prospective. J Asian Earth Sci 118:68–80. https://doi.org/10.1016/j.jseaes.2016.01.002

    Article  Google Scholar 

  • Shano L, Raghuvanshi TK, Meten M (2020) Landslide susceptibility evaluation and hazard zonation techniques–a review. Geoenvironmental Disasters 7:1–19

    Article  Google Scholar 

  • Shao X, Xu C, Ma S, Zhou Q (2019) Effects of seismogenic faults on the predictive mapping of probability to earthquake-triggered landslides. ISPRS Int J Geo-Inf 8(8):328

    Article  Google Scholar 

  • Shao X, Ma S, Xu C, Zhang P, Wen B, Tian Y, Zhou Q, Cui Y (2019) Planet image-based inventorying and machine learning-based susceptibility mapping for the landslides triggered by the 2018 Mw66 Tomakomai Japan earthquake. Remote Sens 11(8):978

    Article  Google Scholar 

  • Sotiris, V., George, P., Spyros, P., 2016. Map of co-seismic landslides and surface ruptures for the M 7.8 Kaikoura, New Zealand Earthquake. http://eqgeogr.weebly.com/blog/map-of-co-seismic-landslides-surface-ruptures-for-the-m-78-kaikoura-new-zealand-earthquake-version-2

  • Sudmeier-Rieux K, Qureshi RA, Peduzzi P, Jaboyedoff MJ, Breguet A, Dubois J, Jaubert R, Cheema MA (2007). An interdisciplinary approach to understanding landslides and risk management: a case study from earthquake-affected Kashmir. Mountain Forum, Mountain GIS e-Conference, January 14–25, 2008, p. 16

  • Svalova V (2018) Landslide risk management and crises events. In Crisis Management-Theory and Practice, IntechOpen

    Book  Google Scholar 

  • Tahirkheli, RAK Jan MQ (1979) A preliminary geological map of Kohistan and adjoining areas, Northern Pakistan. Geological Bulletin, University of Peshawar, (Special Issue) 11 (in pocket)

  • Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(1–2):1–19

    Article  Google Scholar 

  • Tang C, VanWesten CJ, Tanyas H, Jetten VG (2016) Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake. Nat Hazards Earth Syst Sci 16:26412655. https://doi.org/10.5194/nhess-16-2641-2016

    Article  Google Scholar 

  • Tanyaş H, Westen CJ, Allstadt KE, Nowicki Jessee MA, Görüm T, Jibson RW, Godt JW, Sato HP, Schmitt RG, Marc O (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophy Res: Earth Surface 122(10):1991–2015. https://doi.org/10.1002/2017JF004236

    Article  Google Scholar 

  • Tian Y, Owen LA, Xu C, Ma S, Li K, Xu X, Figueiredo PM, Kang W, Guo P, Wang S, Liang X, Maharjan SB (2020) Landslide development within 3 years after the 2015 Mw 78 Gorkha earthquake, Nepal. Landslides. https://doi.org/10.1007/s10346-020-01366-x

    Article  Google Scholar 

  • Torizin J, Fuchs M, Awan AA, Ahmad I, Akhtar SS, Sadiq S, Razzak A, Weggenmann D, Fawad F, Khalid N, Sabir F, Khan AJ (2017) Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan. Nat Hazard 89(2):757–784

    Article  Google Scholar 

  • Uchida T, Kataoka S, Iwao T, Matsuo O, Terada H, Nakano Y, Sugiura N, Osanai N (2004) A study on methodology for assessing the potential of slope failures during earthquakes. Technical Note of National Institute for Land and Infrastructure Management, no 204, 91 p. (in Japanese with English abstract). http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0204.html

  • UNISDR (2005) Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters. In: U.N.I.S.f.D. (ed) World conference on disaster reduction, 18–22 January 2005, Kobe, Hyogo, Japan

  • USGS (United States Geological Survey) (2005) Magnitude 7.6-Pakistan earthquake 2005 summary. http://earthquake.usgs.gov/earthquakes

  • Vanacker V, Vanderschaeghe M, Govers G, Willems E, Poesen J, Deckers J, De Bievre B (2003) Linking hydrological, infinite slope stability and land use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology 52:299–315

    Article  Google Scholar 

  • Wadia DN (1931) The syntaxis of the North-West Himalaya—Its Rocks, Tectonics, and Orogeny. Rec Geol Surv India 65:189–220

    Google Scholar 

  • Wang W, Xu B (1984) Brief introduction of landslides in loess in China. In: Proceedings of 4th international symposium on landslides, Toronto Investiga, 1: 197–207

  • Wang F, Fan X, Yunus AP, Subramanian SS, Alonso-Rodriguez A, Dai L, Xu Q, Huang R (2019) Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 66), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides 16(8):1551–1566

    Article  Google Scholar 

  • World Bank and Asian Development Bank (2005) Preliminary damage and needs assessment. Asian development bank and world bank, Islamabad, Pakistan, p 124

    Google Scholar 

  • Xu C (2015) Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geosci Front 6(6):825–836

    Article  Google Scholar 

  • Xu C, Xu X (2014) Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010. Nat Hazards 72(2):871–893

    Article  Google Scholar 

  • Xu, C., Dai, F. C., Xu, X., 2010. Wenchuan earthquake-induced landslides: An overview, 56(6), pp.860–874. (in Chinese)

  • Xu C, Dai F, Xu X, Lee YH (2012) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70–80

    Article  Google Scholar 

  • Xu C, Xu X, Yu G (2013) Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms 7.1, Yushu China earthquake. Landslides 10(4):421–431. https://doi.org/10.1007/s10346-012-0340-x

    Article  Google Scholar 

  • Xu C, Xu X, Shyu JBH, Zheng W, Min W (2014) Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: Inventory compiling and spatial distribution analysis. J Asian Earth Sci 92:125–142. https://doi.org/10.1016/j.jseaes.2014.06.014

    Article  Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461

    Article  Google Scholar 

  • Xu C, Xu X, Shyu JBH (2015) Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 248:77–92. https://doi.org/10.1016/j.geomorph.2015.07.002

    Article  Google Scholar 

  • Xu C, Xu X, Shyu JBH, Gao M, Tan X, Ran Y, Zheng W (2015) Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides 12(2):365–385

    Article  Google Scholar 

  • Xu C, Shen L, Wang G (2016) Soft computing in assessment of earthquake-triggered landslide susceptibility. Environmental Earth Sciences 75(9):761–717

    Article  Google Scholar 

  • Yamagishi H, Yamazaki F (2018) Landslides by the 2018 Hokkaido Iburi-TobuEarthquake on September 6. Landslides 15(12):2521–2524. https://doi.org/10.1007/s10346-018-1092-z

    Article  Google Scholar 

  • Yang W, Qi W, Wang M, Zhang J, Zhang Y (2017) Spatial and temporal analyses of post-seismic landslide changes near the epicenter of the Wenchuan earthquake. Geomorphology 276:8–15. https://doi.org/10.1016/j.geomorph.2016.10.010

    Article  Google Scholar 

  • Yang W, Qi W, Zhou J (2018) Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake. Ecol Eng 89(438):444. https://doi.org/10.1016/j.ecolind.2017.12.006

    Article  Google Scholar 

  • Yunus AP, Fan X, Tang X, Jie D, Xu Q, Huang R (2020) Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sens Environ 236:111476

    Article  Google Scholar 

  • Zhang S, Zhang LM (2017) Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area. Geomorphology 276:86–103. https://doi.org/10.1016/j.geomorph.2016.10.009

    Article  Google Scholar 

  • Zhang S, Zhang L, Lacasse S, Nadim F (2016) Evolution of mass movements near epicentre of Wenchuan Earthquake, the first eight years. Sci Rep 6:36154. https://doi.org/10.1038/srep36154

    Article  Google Scholar 

  • Zhu Y, Dai F, Yao X, Tu X, Shi X (2019) Field investigation and numerical simulation of the seismic triggering mechanism of the Tahman landslide in eastern Pamir, Northwest China. Bull Eng Geol Env 78(8):5795–5809

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledged the Higher Education Commission Pakistan (HEC) for the financial support under NRPU (Grant No. 8899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Basharat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basharat, M., Riaz, M.T., Jan, M.Q. et al. A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges. Nat Hazards 108, 1–30 (2021). https://doi.org/10.1007/s11069-021-04688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04688-8

Keywords

Navigation