Skip to main content
Log in

Control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator is investigated analytically and numerically in this paper. The control strategy is introduced via a fast excitation and attention is focused on the response near the primary resonance. The fast excitation is added to the basic harmonic force, either through a harmonic force applied from above, or via a harmonic base displacement added from bellow, or by considering the stiffness of the oscillator as a periodically and rapidly varying in time. The results reveal that the threshold of vibroimpact response initiated by jump phenomenon near the primary resonance can be shifted toward lower or higher frequencies of the slow dynamic system depending on the fast excitation taken into consideration. It was also shown that the most realistic and practical way for controlling the vibroimpact dynamics is the introduction of a fast harmonic base displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayak, R.: Contact vibrations. J. Sound Vib. 22, 297–322 (1972)

    Article  MATH  Google Scholar 

  2. Hess, D., Soom, A.: Normal vibrations and friction under harmonic loads: Part 1: Hertzian contact. ASME J. Tribol. 113, 80–86 (1991)

    Article  Google Scholar 

  3. Sabot, J., Krempf, P., Janolin, C.: Nonlinear vibrations of a sphere–plane contact excited by a normal load. J. Sound Vib. 214, 359–375 (1998)

    Article  Google Scholar 

  4. Carson, R., Johnson, K.: Surface corrugations spontaneously generated in a rolling contact disc machine. Wear 17, 59–72 (1971)

    Article  Google Scholar 

  5. Soom, A., Chen, J.W.: Simulation of random surface roughness-induced contact vibrations at Hertzian contacts during steady sliding. ASME J. Tribol. 108, 123–127 (1986)

    Article  Google Scholar 

  6. Mann, B.P., Carter, R.E., Hazra, S.S.: Experimental study of an impact oscillator with viscoelastic and Hertzian contact. Nonlinear Dyn. 50, 587–596 (2007)

    Article  MATH  Google Scholar 

  7. Rong, H., Wanga, X., Xu, W., Fang, F.: Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations. Int. J. Non-Linear Mech. 45, 474–481 (2010)

    Article  Google Scholar 

  8. Rigaud, E., Perret-Liaudet, P.: Experiments and numerical results on nonlinear vibrations of an impacting Hertzian contact. Part 1: Harmonic excitation. J. Sound Vib. 265, 289–307 (2003)

    Article  Google Scholar 

  9. Perret-Liaudet, J., Rigaud, E.: Response of an impacting Hertzian contact to an order-2 subharmonic excitation: Theory and experiments. J. Sound Vib. 296, 319–333 (2003)

    Article  Google Scholar 

  10. Perret-Liaudet, J., Rigaud, E.: Superharmonic resonance of order 2 for an impacting Hertzian contact oscillator: Theory and experiments. J. Comput. Nonlinear Dyn. 2, 190–196 (2007)

    Article  Google Scholar 

  11. Hess, D., Soom, A., Kim, C.: Normal vibrations and friction at a Hertzian contact under random excitation: Theory and experiments. J. Sound Vib. 153, 491–508 (1992)

    Article  MATH  Google Scholar 

  12. Perret-Liaudet, J., Rigaud, E.: Experiments and numerical results on nonlinear vibrations of an impacting Hertzian contact. Part 2: Random excitation. J. Sound Vib. 265, 309–327 (2003)

    Article  Google Scholar 

  13. Stephenson, A.: On induced stability. Philos. Mag. 15, 233–236 (1908)

    Google Scholar 

  14. Hirsch, P.: Das pendel mit oszillierendem Aufhängepunkt. Z. Angew. Math. Mech. 10, 41–52 (1930)

    Article  MATH  Google Scholar 

  15. Kapitza, P.L.: Dynamic stability of a pendulum with an oscillating point of suspension. Z. Eksp. Teor. Fiz. 21, 588–597 (1951) (in Russian)

    Google Scholar 

  16. Thomsen, J.J.: Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening. J. Sound Vib. 253, 807–831 (2002)

    Article  Google Scholar 

  17. Jensen, J.S., Tcherniak, D.M., Thomsen, J.J.: Stiffening effects of high-frequency excitation: experiments for an axially loaded beam. J. Appl. Mech. 253, 397–402 (2000)

    Article  Google Scholar 

  18. Hansen, M.H.: Effect of high-frequency excitation on natural frequencies of spinning discs. J. Sound Vib. 234, 577–589 (2000)

    Article  Google Scholar 

  19. Tcherniak, D., Thomsen, J.J.: Slow effect of fast harmonic excitation for elastic structures. Nonlinear Dyn. 17, 227–246 (1988)

    Article  Google Scholar 

  20. Mann, B.P., Koplow, M.A.: Symmetry breaking bifurcations of a parametrically excited pendulum. Nonlinear Dyn. 46, 427–437 (2006)

    Article  MATH  Google Scholar 

  21. Sah, S.M., Belhaq, M.: Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator. Chaos Solitons Fractals 37, 1489–1496 (2008)

    Article  MATH  Google Scholar 

  22. Belhaq, M., Sah, S.M.: Fast parametrically excited van der Pol oscillator with time delay state feedback. Int. J. Non-Linear Mech. 43, 124–130 (2008)

    Article  Google Scholar 

  23. Belhaq, M., Sah, S.M.: Horizontal fast excitation in delayed van der Pol oscillator. Commun. Nonlinear Sci. Numer. Simul. 13, 1706–1713 (2008)

    Article  Google Scholar 

  24. Belhaq, M., Fahsi, A.: 2:1 and 1:1 frequency-locking in fast excited van der Pol–Mathieu–Duffing oscillator. Nonlinear Dyn. 53, 139–152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fahsi, A., Belhaq, M., Lakrad, F.: Suppression of hysteresis in a forced van der Pol–Duffing oscillator. Commun. Nonlinear Sci. Numer. Simul. 14, 1609–1616 (2009)

    Article  MathSciNet  Google Scholar 

  26. Belhaq, M., Fahsi, A.: Hysteresis suppression for primary and subharmonic 3:1 resonances using fast excitation. Nonlinear Dyn. 57, 275–287 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lakrad, F., Belhaq, M.: Suppression of pull-in instability in MEMS using a high-frequency actuation. Commun. Nonlinear Sci. Numer. Simul. 15, 3640–3646 (2010)

    Article  Google Scholar 

  28. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  29. Blekhman, I.I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Application. Singapore, World Scientific (2000)

    Book  Google Scholar 

  30. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Google Scholar 

  31. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Belhaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bichri, A., Belhaq, M. & Perret-Liaudet, J. Control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator. Nonlinear Dyn 63, 51–60 (2011). https://doi.org/10.1007/s11071-010-9784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9784-5

Keywords

Navigation