Skip to main content
Log in

Analysis of financial data series using fractional Fourier transform and multidimensional scaling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://finance.yahoo.com

  2. Condom, E.U.: Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. 23, 158–164 (1937)

    Article  Google Scholar 

  3. Torgerson, W.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  4. Sammon, J.W., Jr.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18, 401–409 (1969)

    Article  Google Scholar 

  5. Kruskal, J., Wish, M.: Multidimensional Scaling. Sage, Newbury Park (1978)

    Google Scholar 

  6. Ramsay, J.O.: Some small sample results for maximum likelihood estimation in multidimensional scaling. Psychometrika 45(1), 139–144 (1980)

    Article  MATH  Google Scholar 

  7. Woelfel, J., Barnett, G.A.: Multidimensional scaling in Riemann space. Qual. Quant. 16(6), 469–491 (1982)

    Article  Google Scholar 

  8. Seber, G.A.F.: Multivariate Observations. Wiley, New York (1986)

    Google Scholar 

  9. Ozaktas, H.M., Ankan, O., Kutay, M.A., Bozdaği, G.: Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Article  Google Scholar 

  10. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Econophysics: financial time series from a statistical physics point of view. Physica A 279, 443–456 (2000)

    Article  MathSciNet  Google Scholar 

  11. Ozaktas, H.M., Zalesvsky, Z., Kutay, M.A.: The Fractional Fourier Transform. Wiley, Chichester (2001)

    Google Scholar 

  12. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall-CRC, New York (2001)

    MATH  Google Scholar 

  13. Narayanan, V.A., Prabhu, K.M.M.: The fractional Fourier transform: theory implementation and error analysis. Microprocess. Microsyst. 27(10), 511–521 (2003)

    Article  Google Scholar 

  14. Tenreiro Machado, J.A.: A probabilistic interpretation of the fractional-order differentiation. J. Fract. Calc. Appl. Anal. 6(1), 73–80 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Bultheel, A., Martínez Sulbaran, H.: Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: Proc. IEEE INFOCOM (2004)

    Google Scholar 

  17. Saxena, R., Singh, K.: Fractional Fourier transform: A novel tool for signal processing. J. Indian Inst. Sci. 85, 11–26 (2005)

    Google Scholar 

  18. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  19. Biaz, S., Ji, Y.: Precise Distributed Localization Algorithms for Wireless Networks, pp. 388–394 (2005)

  20. Matheus, J., Dourado, A., Henriques, J., Antonio, M., Nogueira, D.: Iterative multidimensional scaling for industrial process monitoring. In: IEEE International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan (2006)

    Google Scholar 

  21. Lima, M.F.M., Tenreiro Machado, J.A., Crisostomo, M.: Fractional dynamics in mechanical manipulation. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, 6th International Conference on Multibody Systems, Nonlinear Dynamics and Control (MSNDC), Las Vegas, NV (2007)

    Google Scholar 

  22. Pei, S.-C., Ding, J.-J.: Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Trans. Signal Process. 55(10), 4839–4850 (2007)

    Article  MathSciNet  Google Scholar 

  23. Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, E.: A unified econophysics explanation for the power-law exponents of stock market activity. Physica A 382, 81–88 (2007)

    Article  Google Scholar 

  24. Vilela Mendes, R., Oliveira, M.J.: A data-reconstructed fractional volatility model. Economics: Open-Access, Open-Assess. E-J. 2(22) (2008). http://www.economics-ejournal.org/economics/discussionpapers/2008-22

  25. Tao, R., Deng, B., Zhang, W.-Q., Wang, Y.: Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 56(1), 158–171 (2008)

    Article  MathSciNet  Google Scholar 

  26. Jiang, Z.-Q., Zhou, W.-X., Sornette, D., Woodard, R., Bastiaensen, K., Cauwels, P.: Bubble diagnosis and prediction of the 2005–2007 and 2008–2009 Chinese stock market bubbles (2009). http://www.citebase.org/abstract?id=oai:arXiv.org:0909.1007

  27. Tzagarakis, C., Jerde, T.A., Lewis, S.M., Ugurbil, K., Georgopoulos, A.P.: Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of FMRI patterns of activation. J. Exp. Brain Res. 194(3), 369–380 (2009)

    Article  Google Scholar 

  28. Chan, F.K.W., So, H.C.: Efficient weighted multidimensional scaling for wireless sensor network localization. IEEE Transactions on Signal Processing 57(11), 4548–4553 (2009)

    Article  MathSciNet  Google Scholar 

  29. Vilela Mendes, R.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009). http://dx.doi.org/10.1007/s11071-008-9372-0

    Article  MathSciNet  MATH  Google Scholar 

  30. Campos, R.G., Rico-Melgoza, J., Chavez, E.: Xft: Extending the digital application of the Fourier transform (2009). arXiv:0911.0952

  31. Nigmatullin, R.R.: Universal distribution function for the strongly-correlated fluctuations: General way for description of different random sequences. Commun. Nonlinear Sci. Numer. Simul. 15(3), 637–647 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando B. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenreiro Machado, J., Duarte, F.B. & Monteiro Duarte, G. Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dyn 65, 235–245 (2011). https://doi.org/10.1007/s11071-010-9885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9885-1

Keywords

Navigation