Skip to main content
Log in

Dynamical analysis of compositions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analyzes musical opus from the point of view of two mathematical tools, namely the entropy and the multidimensional scaling (MDS). The Fourier analysis reveals a fractional dynamics, but the time rhythm variations are diluted along the spectrum. The combination of time-window entropy and MDS copes with the time characteristics and is well suited to treat a large volume of data. The experiments focus on a large number of compositions classified along three sets of musical styles, namely “Classical”, “Jazz”, and “Pop & Rock” compositions. Without lack of generality, the present study describes the application of the tools and the sets of musical compositions in a methodology leading to clear conclusions, but extensions to other possibilities are straightforward. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments toward a dynamical analysis of musical compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grout, D.J., Palisca, C.V.: A History of Western Music, 6th edn. W.W. Norton, New York (2001). ISBN 0-393-97527-4

    Google Scholar 

  2. Reitman, B.: History of mathematical approaches to western music. http://www.mlahanas.de/Greeks/PDF/math_music_hist.pdf (2003)

  3. Fauvel, J., Flood, R., Wilson, R.: Music and Mathematics: From Pythagoras to Fractals. Oxford University Press, Oxford (2003). ISBN 0-19-851187-6

    MATH  Google Scholar 

  4. Kepler, J.: Mysterium Cosmographicum De Stella Nova, 1st edn. C.H. Beck, Munich (1938)

    Google Scholar 

  5. Kelley, R.: The Relationship Between Contrapuntal and Serial Composition Techniques As Seen in Works of Webern and Stravinsky. Furman University, Greenville (1999)

    Google Scholar 

  6. Schoenberg, A.: In: Stein, L. (ed.) Composition with Twelve Tones. Style and Idea, (trans. L. Black) (revised). Faber & Faber, London (1984)

    Google Scholar 

  7. Richards, S.: John Cage As … . Amber Lane Press, Oxford (1996). ISBN 1-872868-17-7

    Google Scholar 

  8. Griffiths, P.: Modern Music and After—Directions since 1945. Oxford University Press, Oxford (1995). ISBN 0-19-816511-0

    Google Scholar 

  9. Corbett, J.: Extended Play—Sounding off from John Cage to Dr. Funkenstein. Duke University Press, Durham (1994). ISBN 0 822 31473 8

    Google Scholar 

  10. Maurer, J.: A brief history of Algorithm Composition Stanford University Center for Computer Research in Music and Acoustics. https://ccrma.stanford.edu/~blackrse/algorithm.html (1999)

  11. Bowles, E.: Musicke’s Handmaiden: Or Technology in the Service of the Arts. Cornell University Press, Ithaca (1970)

    Google Scholar 

  12. Roads, C.: The Computer Music Tutorial. The MIT Press, Cambridge (1996). ISBN 0-262-68082-3

    Google Scholar 

  13. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, San Diego (1974)

    Google Scholar 

  14. Nigmatullin, R.R.: A fractional integral and its physical interpretation. Theor. Math. Phys. 90(3), 242–251 (1992)

    Article  MathSciNet  Google Scholar 

  15. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    MATH  Google Scholar 

  17. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tenreiro Machado, J.: Analysis and design of fractional-order digital control systems. J. Syst. Anal. Modell. Simul. 27(2–3), 107–122 (1997)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1998)

    Google Scholar 

  20. Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  22. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  24. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, New York (2006)

    Google Scholar 

  25. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  26. Tenreiro Machado, J.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)

    Article  Google Scholar 

  27. Baleanu, D.: About fractional quantization and fractional variational principles. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2520–2523 (2009)

    Article  Google Scholar 

  28. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  29. Caponetto, R., Dongola, G., Fortuna, L., Petráš, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Book  Google Scholar 

  30. Concepcion, A.M., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional Order Systems and Controls: Fundamentals and Applications. Series: Advances in Industrial Control. Springer, Berlin (2010)

    MATH  Google Scholar 

  31. Diethelm, K.: The analysis of fractional differential equations. In: Lecture Notes in Mathematics Series. Springer, Berlin (2010)

    Google Scholar 

  32. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 & 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  33. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  Google Scholar 

  34. Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover, New York (1957)

    MATH  Google Scholar 

  35. Plastino, A., Plastino, A.R.: Tsallis entropy and Jaynes’ Information Theory formalism. Braz. J. Phys. 29(1), 50–60 (1999)

    Article  MathSciNet  Google Scholar 

  36. Li, X., Essex, C., Davison, M., Hoffmann, K.H., Schulzky, C.: Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn. 28(3), 279–291 (2003)

    Article  Google Scholar 

  37. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Boltzmann–Gibbs entropy versus Tsallis entropy: recent contributions to resolving the argument of Einstein concerning “Neither Herr Boltzmann nor Herr Planck has Given a Definition of W”? Astrophys. Space Sci. 290(3–4), 241–245 (2004)

    Article  MATH  Google Scholar 

  38. Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Physica A 375(1), 110–122 (2007)

    Article  MathSciNet  Google Scholar 

  39. Carter, T.: An introduction to information theory and entropy. In: Complex Systems Summer School, Santa Fe, June (2007)

    Google Scholar 

  40. Rathie, P., Da Silva, S.: Shannon, Levy, and Tsallis: a note. Appl. Math. Sci. 2(28), 1359–1363 (2008)

    MATH  Google Scholar 

  41. Beck, C.: Generalized information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)

    Article  Google Scholar 

  42. Gray, R.M.: Entropy and Information Theory. Springer, Berlin (2009)

    Google Scholar 

  43. Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516–2519 (2009)

    Article  MathSciNet  Google Scholar 

  44. Taneja, I.G.: On measures of information and inaccuracy. J. Stat. Phys. 14, 203–270 (1976)

    MathSciNet  Google Scholar 

  45. Sharma, B.D., Taneja, R.K.: Three generalized additive measures of entropy. Electron. Inf. Kybern. 13, 419–433 (1977)

    MathSciNet  MATH  Google Scholar 

  46. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)

    Article  MathSciNet  Google Scholar 

  47. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformation from distance matrices. J. Comput. Chem. 14, 114–120 (1993)

    Article  Google Scholar 

  48. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  49. Martinez-Torres, M., Barrero Garcia, F., Toral Marin, S., Gallardo, S.: A digital signal processing teaching methodology using concept-mapping techniques. IEEE Trans. Educ. 48(3), 422–429 (2005)

    Article  Google Scholar 

  50. Mao, G., Fidan, B.: Localization Algorithms and Strategies for Wireless Sensor Networks. Igi-Global, Hershey (2009). ISBN 978-1-60566-397-5 (ebook)

    Book  Google Scholar 

  51. Cox, T., Cox, M.: Multidimensional Scaling, 2nd edn. Chapman & Hall/CRC, Boca Raton (2001). ISBN 1584880945

    MATH  Google Scholar 

  52. Carreira-Perpinan, M.: A review of dimension reduction techniques. Technical Report CS-96-09, Department of Computer Science, University of Sheffield (1997)

  53. Fodor, I.: A survey of dimension reduction techniques. Technical Report, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory (2002)

  54. Shepard, R.: The analysis of proximities: multidimensional scaling with an unknown distance function, I and II. Psychometrika 27, 219–246 (1962)

    Article  MathSciNet  Google Scholar 

  55. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kruskal, J., Wish, M.: Multidimensional Scaling. Sage, Newbury Park (1978)

    Google Scholar 

  57. Martinez, W., Martinez, A.: Exploratory Data Analysis with MATLAB. Chapman & Hall/CRC Press, Boca Raton (2005). ISBN 1-58488-366-9

    MATH  Google Scholar 

  58. Leeuw, J., Patrick, M.: Multidimensional scaling using majorization: SMACOF in R. J. Stat. Softw. 31(3) (2009)

  59. Borg, I., Groenen, P.: Modern Multidimensional Scaling-Theory and Applications, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenreiro Machado, J.A., Costa, A.C. & Lima, M.F.M. Dynamical analysis of compositions. Nonlinear Dyn 65, 399–412 (2011). https://doi.org/10.1007/s11071-010-9900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9900-6

Keywords

Navigation