Skip to main content

Advertisement

Log in

Global and local fuzzy energy-based active contours for image segmentation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel active contour model for image segmentation based on techniques of curve evolution. The paper introduces an energy functional including a local fuzzy energy and a global fuzzy energy to attract the active contour and stop it on the object boundaries. The local term allows the method to deal with intensity inhomogeneity in images. The global term, aside from driving the contour toward the desired objects, is used to avoid unsatisfying results led by unsuitable initial contour position, a common limitation of models using local information solely. In addition, instead of solving the Euler–Lagrange equation, the paper directly calculates the alterations of the fuzzy energy. By this way, the contour converges quickly to the object boundary. Experimental results on both 2D and 3D images validate the effectiveness of the model when working with intensity inhomogeneous images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pham, D., Xu, C., Prince, J.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  2. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color texture, motion and shape. Int. J. Comput. Vis. 72(5), 195–215 (2007)

    Article  Google Scholar 

  3. Munoz, X., Freixenet, J., Cufi, X., Marti, J.: Strategies for image segmentation combining region and boundary information. Pattern Recognit. 24(1), 375–392 (2003)

    Article  Google Scholar 

  4. Pham, D.L., Prince, J.L.: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 20(1), 57–68 (1999)

    Article  MATH  Google Scholar 

  5. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  6. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  7. Ghanei, A., Soltanian-Zadeh, H., Windham, J.P.: Segmentation of hippocampus from brain MRI using deformable contours. Comput. Med. Imaging Graph. 22(3), 203–216 (1998)

    Article  Google Scholar 

  8. Amini, L., Soltanian-Zadeh, H., Lucas, C., Gity, M.: Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours. IEEE Trans. Biomed. Eng. 51(5), 800–811 (2004)

    Article  Google Scholar 

  9. Li, S., Fevens, T., Krzyzak, A., Jin, C., Li, S.: Semi-automatic computer aided lesion detection in dental X-rays using variational level set. Pattern Recognit. 40(10), 2861–2873 (2007)

    Article  Google Scholar 

  10. Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y., Dohi, T.: A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans. Image Process. 17(8), 1295–1312 (2008)

    Article  MathSciNet  Google Scholar 

  11. He, L., Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., Wee, W.G.: A comparative study of deformable contour methods on medical image segmentation. Image Vis. Comput. 26(2), 141–163 (2008)

    Article  Google Scholar 

  12. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  14. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199–209 (1997)

    Article  Google Scholar 

  15. Cohen, L., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  16. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paragios, N., Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26, 402–407 (2004)

    Article  Google Scholar 

  18. Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes model for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  19. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  20. Xu, N., Ahuja, N.: Object contour tracking using graph cuts based active contours. In: Proceedings of IEEE International. Conference on Computer Vision, Rochester, New York, USA, pp. 277–280 (2002)

    Google Scholar 

  21. Xu, N., Bansal, R., Ahuja, N.: Object segmentation using graph cuts based active contours. In: IEEE International Conference Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, pp. 46–53 (2003)

    Google Scholar 

  22. Gibou, F., Fedkiw, R.: A fast hybrid k-means level set algorithm for segmentation. In: Proceedings of 4th Annual Hawaii International Conference on Statistics and Mathematics, Honolulu, Hawaii, USA, pp. 281–291 (2005)

    Google Scholar 

  23. Chen, Z., Qui, T., Ruan, S.: Fuzzy adaptive level set algorithm for brain tissue segmentation. In: Proceedings of International Conference Signal Processing, Beijing, China, pp. 1047–1050 (2008)

    Google Scholar 

  24. Krinidis, S., Chatzis, V.: Fuzzy energy-based active contour. IEEE Trans. Image Process. 18(12), 2747–2755 (2009)

    Article  MathSciNet  Google Scholar 

  25. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  26. Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  27. Piovano, J., Papadopoulo, T.: Local statistics based region segmentation with automatic scale selection. In: Proceedings of European Conference in Computer Vision (ECCV), Marseille, France, pp. 486–499 (2008)

    Google Scholar 

  28. Song, B., Chan, T.: A fast algorithm for level set based optimization. UCLA CAM Report 02-68 (2002)

  29. He, L., Osher, S.: Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006)

  30. Pan, Y., Birdwell, D.J., Djouadi, S.M.: Efficient implementation of the Chan-Vese models without solving PDEs. In: Proceedings of International Workshop on Multimedia Signal Processing, pp. 350–353 (2006)

    Chapter  Google Scholar 

  31. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  32. Ha, J., Johnson, E.N., Tannenbaum, A.: Real-time visual tracking using geometric active contours for the navigation and control of UAVs. In: Proceedings of American Control Conference, New York, USA, pp. 365–370 (2007)

    Chapter  Google Scholar 

  33. He, L., Osher, S.: Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006)

  34. He, L., Zheng, S., Wang, L.: Integrating local distribution information with level set for boundary extraction. J. Vis. Commun. Image Represent. 21(4), 343–354 (2010)

    Article  Google Scholar 

  35. Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520–531 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Kai Shyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyu, KK., Pham, VT., Tran, TT. et al. Global and local fuzzy energy-based active contours for image segmentation. Nonlinear Dyn 67, 1559–1578 (2012). https://doi.org/10.1007/s11071-011-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0088-1

Keywords

Navigation