Skip to main content
Log in

A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new lattice model of the traffic flow is proposed with the consideration of the driver anticipation effect for a two-lane system. The linear stability condition is derived by employing linear stability analysis. The analytical result shows that the driver anticipation effect can improve the stability of the traffic flow in a two-lane system. The mKdV equation near the critical point is obtained to describe the propagating behavior of a traffic density wave with the perturbation method. The simulation results are also in good agreement with the analytical results, which show that the traffic jam can be suppressed efficiently when the driver anticipation effect is considered in a two-lane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang, T.Q., Huang, H.J., Shang, H.Y.: A new macro model for traffic flow with the consideration of the driver’s forecast effect. Phys. Lett. A 374, 1668 (2010)

    Article  MATH  Google Scholar 

  2. Tang, T.Q., Li, C.Y., Huang, H.J.: A new car-following model with the consideration of the driver’s forecast effects. Phys. Lett. A 374, 3951 (2010)

    Article  MATH  Google Scholar 

  3. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70, 1205 (2012)

    Article  MathSciNet  Google Scholar 

  4. Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67, 2255 (2012)

    Article  Google Scholar 

  5. David, J.L., Paul, S.A.: A nonlinear temporal headway model of traffic dynamics. Nonlinear Dyn. 16, 127 (1998)

    Article  MATH  Google Scholar 

  6. Xu, N., Shang, P., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61, 207 (2010)

    Article  MATH  Google Scholar 

  7. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ge, H.X., Cheng, R.J., Lei, L.: The theoretical analysis of the lattice hydrodynamic models for traffic flow theory. Physica A 389, 2825 (2010)

    Article  Google Scholar 

  9. Tian, C., Sun, D.H., Yang, S.H.: A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect. Chin. Phys. B 20, 088902 (2011)

    Article  Google Scholar 

  10. Sun, D.H., Tian, C.: A traffic flow lattice model with the consideration of driver anticipation effect and its numerical simulation. Acta Phys. Sin. 60, 068901 (2011)

    Google Scholar 

  11. Zhao, M., Sun, D.H., Tian, C.: Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect. Chin. Phys. B 21, 048901 (2012)

    Article  Google Scholar 

  12. Peng, G.H.: A study of wide moving jams in a new lattice model of traffic flow with the consideration of the driver anticipation effect and numerical simulation. Physica A 391, 5971 (2012)

    Article  Google Scholar 

  13. Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Physica A 261, 599 (1998)

    Article  MathSciNet  Google Scholar 

  14. Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Physica A 264, 581 (1999)

    Article  Google Scholar 

  15. Xue, Y.: Lattice model of the optimal traffic flow. Acta Phys. Sin. 53, 25 (2004)

    Google Scholar 

  16. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ge, H.X., Cheng, R.J.: The “backward looking” effect in the lattice hydrodynamic model. Physica A 387, 6952 (2008)

    Article  Google Scholar 

  18. Zhu, H.B.: Lattice models of traffic flow considering drivers’ delay in response. Chin. Phys. B 18, 1322 (2009)

    Article  Google Scholar 

  19. Li, X.L., Li, Z.P., Han, X.L., Dai, S.Q.: Effect of the optimal velocity function on traffic phase transitions in lattice hydrodynamic models. Commun. Nonlinear Sci. Numer. Simul. 14, 2171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ge, H.X.: The Korteweg–de Vries soliton in the lattice hydrodynamic model. Physica A 388, 1682 (2009)

    Article  Google Scholar 

  21. Nagatani, T.: Jamming transition in traffic flow on triangular lattice. Physica A 271, 200 (1999)

    Article  Google Scholar 

  22. Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857 (1999)

    Article  Google Scholar 

  23. Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Physica A 272, 592 (1999)

    Article  Google Scholar 

  24. Zhu, W.X., Chi, E.X.: Analysis of generalized optimal current lattice model for traffic flow. Int. J. Mod. Phys. C 19, 727 (2008)

    Article  MATH  Google Scholar 

  25. Zhu, W.X.: A backward looking optimal current lattice model. Commun. Theor. Phys. 50, 753 (2008)

    Article  Google Scholar 

  26. Tian, H.H., He, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Physica A 388, 2895 (2009)

    Article  MathSciNet  Google Scholar 

  27. Tian, J.F., Jia, B., Li, X.G., Gao, Z.Y.: Flow difference effect in the lattice hydrodynamic model. Chin. Phys. B 19, 040303 (2010)

    Article  Google Scholar 

  28. Sun, D.H., Tian, C., Liu, W.N.: A traffic flow lattice model considering relative current influence and its numerical simulation. Chin. Phys. B 19, 080514 (2010)

    Article  Google Scholar 

  29. Li, Z.P., Li, X.L., Liu, F.Q.: Stabilization analysis and modified KdV equation of lattice models with consideration of relative current. Int. J. Mod. Phys. C 19, 1163 (2008)

    Article  MATH  Google Scholar 

  30. Li, Z.P., Liu, F.Q., Sun, J.: A lattice traffic model with consideration of preceding mixture traffic information. Chin. Phys. B 20, 088901 (2011)

    Article  Google Scholar 

  31. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375, 2153 (2011)

    Article  MATH  Google Scholar 

  32. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width. Phys. Lett. A 375, 2823 (2011)

    Article  MATH  Google Scholar 

  33. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the honk effect. Int. J. Mod. Phys. C 22, 967 (2011)

    Article  MATH  Google Scholar 

  34. Peng, G.H., Cai, X.H., Cao, B.F., Liu, C.Q.: A new lattice model of traffic flow with the consideration of the traffic interruption probability. Physica A 391, 656 (2012)

    Article  Google Scholar 

  35. Peng, G.H., Nie, Y.F., Cao, B.F., Liu, C.Q.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67, 1811–1815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peng, G.H., Cai, X.H., Liu, C.Q., Tuo, M.X.: A new lattice model of traffic flow with the anticipation effect of potential lane changing. Phys. Lett. A 376, 447 (2012)

    Article  MATH  Google Scholar 

  37. Nagatani, T.: Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Physica A 265, 297 (1999)

    Article  Google Scholar 

  38. Tang, T.Q., Huang, H.J., Xue, Y.: An improved two-lane traffic flow lattice model. Acta Phys. Sin. 55, 4026 (2006)

    Google Scholar 

  39. Peng, G.H.: A coupling lattice model of traffic flow on two lanes and numerical simulation. Acta Phys. Sin. 59, 3824 (2010)

    Google Scholar 

  40. Peng, G.H.: A new lattice model of two-lane traffic flow with the consideration of optimal current difference. Commun. Nonlinear Sci. Numer. Simul. 18, 559 (2013)

    Article  MathSciNet  Google Scholar 

  41. Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink–antikink solitons in car following models. Physica A 357, 466 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Chinese Ministry of Education (Grant No. 211123), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 10B072), Doctor Startup Project Foundation of Hunan University of Arts and Science, China (Grant No. BSQD1010) and the Fund of the Key Construction Academic Subject of Hunan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghan Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, G. A new lattice model of the traffic flow with the consideration of the driver anticipation effect in a two-lane system. Nonlinear Dyn 73, 1035–1043 (2013). https://doi.org/10.1007/s11071-013-0850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0850-7

Keywords

Navigation