Skip to main content
Log in

In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the in-plane and out-of-plane dynamics of a curved pipe conveying fluid. Considering the extensibility, von Karman nonlinearity, and pulsating flow, the governing equations are derived by the Newtonian method. First, according to the modified inextensible theory, only the out-of-plane vibration is investigated based on a Galerkin method for discretizing the partial differential equations. The instability regions of combination parametric resonance and principal parametric resonance are determined by using the method of multiple scales (MMS). Parametric studies are also performed. Then the differential quadrature method (DQM) is adopted to discretize the complete pipe model and the nonlinear dynamic equations are carried out numerically with a fourth-order Runge–Kutta technique. The nonlinear dynamic responses are presented to validate the out-of-plane instability analysis and to demonstrate the influence of von Karman geometric nonlinearity. Further, some numerical results obtained in this work are compared with previous experimental results, showing the validity of the theoretical model developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J. Sound Vib. 309, 375–406 (2008)

    Article  Google Scholar 

  2. Jung, D., Chung, J., Mazzoleni, A.: Dynamic stability of a semi-circular pipe conveying harmonically oscillating fluid. J. Sound Vib. 315, 100–117 (2008)

    Article  Google Scholar 

  3. Ghayesh, M.H., Paidoussis, M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45(5), 507–524 (2010)

    Article  Google Scholar 

  4. Ghayesh, M.H., Paidoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330(12), 2869–2899 (2011)

    Article  Google Scholar 

  5. Ghayesh, M.H., Paidoussis, M.P., Amabili, M.: Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J. Sound Vib. 332(24), 6405–6418 (2013)

    Article  Google Scholar 

  6. Wang, L.: Flutter instability of supported pipes conveying fluid subjected to distributed follower force. Acta Mech. Solida Sin. 25, 46–52 (2012)

    Article  Google Scholar 

  7. Zhou, X.P.: Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mech. Solida Sin. 25, 168–176 (2012)

    Article  Google Scholar 

  8. Zhang, Y.L., Chen, L.Q.: Internal resonance of pipes conveying fluid in the supercritical regime. Nonlinear Dyn. 67, 1505–1514 (2012)

    Article  MATH  Google Scholar 

  9. Paidoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  10. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, London (1998)

    Google Scholar 

  11. Chen, S.S.: Flow-Induced Vibration of Circular Structures. Hemisphere, Washington (1987)

    Google Scholar 

  12. Chen, S.S.: Out-of-plane vibration and stability of curved tubes conveying fluid. J. Appl. Mech. 40, 362–368 (1973)

    Article  Google Scholar 

  13. Hill, J.L., Davis, C.G.: The effect of initial forces on the hydrostatic vibration and stability of planar curved tube. J. Appl. Mech. 41, 335–359 (1974)

    Article  Google Scholar 

  14. Doll, R.W., Mote, C.D.: On the dynamic analysis of curved and twisted cylinders transporting fluids. J. Press. Vessel Technol. 98(2), 143–150 (1976)

    Article  Google Scholar 

  15. Misra, A.K., Paidoussis, M.P., Van, K.S.: On the dynamics of curved pipes transporting fluid, part I: inextensible theory. J. Fluids Struct. 2, 221–244 (1988)

    Article  MATH  Google Scholar 

  16. Misra, A.K., Paidoussis, M.P., Van, K.S.: On the dynamics of curved pipes transporting fluid, part II: extensible theory. J. Fluids Struct. 2, 245–261 (1988)

    Article  MATH  Google Scholar 

  17. Ni, Q., Wang, L., Qian, Q.: Bifurcations and chaotic motions of a curved pipe conveying fluid with nonlinear constraints. Comput. Struct. 84, 708–717 (2006)

    Article  Google Scholar 

  18. Jung, D., Chung, J.: In-plane and out-of-plane motions of an extensible semi-circular conveying fluid. J. Sound Vib. 311, 408–420 (2008)

    Article  Google Scholar 

  19. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)

    Article  Google Scholar 

  20. Paidoussis, M.P., Sundararajan, C.: Parametric and combination resonances of a pipe conveying pulsating fluid. J. Appl. Mech. 42, 780–784 (1975)

    Article  MATH  Google Scholar 

  21. Yoshizawa, M., Nao, H., Hasegawa, E., Tsujioka, Y.: Lateral vibration of a flexible pipe conveying fluid with pulsating flow. Bull. JSME 29, 2243–2250 (1986)

    Article  Google Scholar 

  22. Bajaj, A.K.: Nonlinear dynamics of tubes carrying a pulsatile flow. Dyn. Stab. Syst. 2, 19–41 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Namchchivaya, N.S.: Non-linear dynamics of supported pipe conveying pulsating fluid, I: subharmonic resonance. Int. J. Non-Linear Mech. 24(3), 185–196 (1989)

    Article  MATH  Google Scholar 

  24. Namchchivaya, N.S., Tien, W.M.: Non-linear dynamics of supported pipe conveying pulsating fluid, II: combination resonance. Int. J. Non-Linear Mech. 24(3), 197–208 (1989)

    Article  MATH  Google Scholar 

  25. Semler, C., Paidoussis, M.P.: Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J. Fluids Struct. 10, 787–825 (1996)

    Article  Google Scholar 

  26. Jin, J.D., Song, Z.Y.: Parametric resonances of supported pipes conveying pulsating fluid. J. Fluids Struct. 20, 763–783 (2005)

    Article  Google Scholar 

  27. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49, 9–30 (2007)

    Article  MATH  Google Scholar 

  28. Chatjigeorgiou, I.K., Mavrakos, S.A.: Nonlinear resonances of parametrically excited risers-numerical and analytic investigation for Ω=2ω 1. Comput. Struct. 83, 560–573 (2005)

    Article  Google Scholar 

  29. Nakamura, K., Yamashita, K., Taniguchi, A., Yoshizawa, M.: Nonlinear out-of-plane vibration of a curved pipe due to pulsating flow. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA (2009)

    Google Scholar 

  30. Ko, C.L., Bert, C.W.: A perturbation solution for non-linear vibration of uniformly curved pipes conveying fluid. Int. J. Non-Linear Mech. 21, 315–325 (1986)

    Article  MATH  Google Scholar 

  31. Nayfeh, A.H., Mook, D.T.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  32. Li, J.J., Cheng, C.J.: Differential quadrature method for analyzing nonlinear dynamic characteristics of viscoelastic plates with shear effects. Nonlinear Dyn. 61, 57–70 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Civalek, O.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  34. Zhong, H., Guo, Q.: Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method. Nonlinear Dyn. 32, 223–234 (2003)

    Article  MATH  Google Scholar 

  35. Civalek, O.: Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ). Struct. Eng. Mech. 25, 201–217 (2007)

    Article  Google Scholar 

  36. Wang, L., Ni, Q.: Nonlinear dynamics of a fluid-conveying curved pipe subjected to motion-limiting constraints and a harmonic excitation. J. Fluids Struct. 24, 96–110 (2008)

    Article  Google Scholar 

  37. Bert, C.W., Malik, M.: Differential quadrature in computational mechanics: a review. Appl. Mech. Rev. 49, 1–27 (1996)

    Article  Google Scholar 

  38. Wang, X., Liu, F., Wang, X.F., Gan, L.F.: New approaches in application of differential quadrature method for fourth-order differential equations. Commun. Numer. Methods Eng. 21, 61–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundation of China (Nos. 11172109 and 11172107) and the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0183) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang.

Appendix A

Appendix A

Expressions of nonlinear terms of the governing equations are listed below.

$$\begin{aligned} N_{1}& = - A \bigl( u''w' + u'w'' - \pi u'^{2} - \pi uu'' + \pi w'^{2}\\ &\quad {} + \pi ww'' - \pi^{2}u'w - \pi^{2}uw' \bigr) - A\biggl(\frac{1}{2}\pi u'^{2}\\ &\quad {} + \pi^{2}u'w + \frac{1}{2}\pi^{3}w^{2} + \frac{1}{2}\pi w'^{2} - \pi^{2}uw'\\ &\quad {} + \frac{1}{2}\pi^{3}u^{2} + \frac{1}{2}\pi v'^{2} + \frac{3}{2}u'^{2}u'' + 2\pi u'u''w \\ &\quad {}+ \pi u'^{2}w' + \frac{1}{2}\pi^{2}u''w^{2} + \pi^{2}u'w'w + \frac{1}{2}u''w'^{2}\\ &\quad {} + u'w'w'' - \pi uu''w' - \pi u'^{2}w' - \pi uu'w''\\ &\quad {} + \frac{1}{2} \pi^{2}u^{2}u'' + \pi^{2}uu'^{2} + \frac{1}{2}\pi u'^{2}w' + \pi u'u''w \\ &\quad {} + 2\pi^{2}u'ww' + \pi^{2}u''w^{2} + \frac{3}{2}\pi^{3}w^{2}w' + \frac{1}{2}\pi w'^{3}\\ &\quad {} + \pi ww'w'' - \pi^{2}uw'^{2} - \pi^{2}u'ww' - \pi^{2}uww''\\ &\quad {} + \frac{1}{2}\pi^{3}u^{2}w' + \pi^{3}uu'w + \frac{1}{2}u''v'^{2} + u'v'v'' \\ &\quad {}+ \frac{1}{2} \pi w'v'^{2} + \pi wv'v'' \biggr), \\ N_{2}& = - A \bigl( v'w'' - \pi v'u' + v''w' - \pi v''u \bigr) \\ &\quad {} - A\biggl(v'u'u'' + \pi v'u''w + \pi v'u'w' + \pi^{2}v'ww'\\ &\quad {} + v'w'w'' - \pi v'u'w' - \pi v'uw'' + \pi^{2}v'uu'\\ &\quad {} + v'^{2}v'' + \frac{1}{2}v''u'^{2} + \pi v''u'w + \frac{1}{2} \pi^{2}v''w^{2}\\ &\quad {} + \frac{1}{2}v''w'^{2} - \pi v''uw' + \frac{1}{2} \pi^{2}v''u^{2} + \frac{1}{2}v''v'^{2} \biggr), \\ N_{3} & = - A \bigl( u'w' - \pi uu' + \pi ww' - \pi^{2}uw \bigr) \\ &\quad {} + A\biggl(u'u'' + \pi u''w + \pi u'w' + \pi^{2}ww' + w'w''\\ &\quad {} - \pi u'w' - \pi uw'' + \pi^{2}uu' + v'v'' - \frac{1}{2}\pi u'^{3}\\ &\quad {} - \pi^{2}u'^{2}w - \frac{1}{2} \pi^{3}u'w^{2} - \frac{1}{2}\pi u'w'^{2} + \pi^{2}uu'w'\\ &\quad {} - \frac{1}{2}\pi^{3}u^{2}u' - \frac{1}{2}\pi^{2}u'^{2}w - \pi^{3}u'w^{2} - \frac{1}{2} \pi^{4}w^{3} \\ &\quad {}- \frac{1}{2}\pi^{2}ww'^{2} + \pi^{3}uww' - \frac{1}{2}\pi^{4}u^{2}w \\ &\quad {} - \frac{1}{2}\pi u'v'^{2} - \frac{1}{2}\pi^{2}wv'^{2}\biggr). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Q., Tang, M., Wang, Y. et al. In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid. Nonlinear Dyn 75, 603–619 (2014). https://doi.org/10.1007/s11071-013-1089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1089-z

Keywords

Navigation